

Come experience the Cuemath methodology and ensure your child stays ahead at math this summer.

Adaptive

Platform

Interactive Visual

Simulations

Personalized Attention

For Grades 1 - 10

LIVE online classes by trained and certified experts.

Get the Cuemath advantage

Book a FREE trial class

NCERT Solutions Class 11 Maths Chapter 15 Statistics

Question 1:

Find the mean deviation about the mean for the data 4,7,8,9,10,12,13,17.

Solution:

The given data is 4,7,8,9,10,12,13,17 Mean of the data

$$\overline{x} = \frac{4+7+8+9+10+12+13+17}{8}$$
$$= \frac{80}{8}$$
$$= 10$$

The deviations of the respective observations from the mean \overline{x} , i.e., $x_i - \overline{x}$ are -6, -3, -2, -1, 0, 2, 3, 7

The absolute values of the deviations, $|x_i - \overline{x}|$ are 6,3,2,1,0,2,3,7

The required mean deviation about the mean is

$$M.D.(\bar{x}) = \frac{\sum_{i=1}^{8} |x_i - \bar{x}|}{8}$$

= $\frac{6+3+2+1+0+2+3+7}{8}$
= $\frac{24}{8}$
= 3

Question 2:

Find the mean deviation about the mean for the data 38,70,48,40,42,55,63,46,54,44.

Solution:

The given data is 38,70,48,40,42,55,63,46,54,44 Mean of the data

$$\overline{x} = \frac{38 + 70 + 48 + 40 + 42 + 55 + 63 + 46 + 54 + 44}{10}$$
$$= \frac{500}{10}$$
$$= 50$$

The deviations of the respective observations from the mean \overline{x} , i.e., $x_i - \overline{x}$ are -12, 20, -2, -10, -8, 5, 13, -4, 4, -6

The absolute values of the deviations, $|x_i - \overline{x}|$ are 12, 20, 2, 10, 8, 5, 13, 4, 4, 6

The required mean deviation about the mean is

$$M.D.(\overline{x}) = \frac{\sum_{i=1}^{10} |x_i - \overline{x}|}{10}$$
$$= \frac{12 + 20 + 2 + 10 + 8 + 5 + 13 + 4 + 4 + 6}{10}$$
$$= \frac{84}{10}$$
$$= 8.4$$

Question 3:

Find the mean deviation about the median for the data 13,17,16,14,11,13,10,16,11,18,12,17.

Solution:

The given data is 13,17,16,14,11,13,10,16,11,18,12,17 Here, the numbers of observations are 12, i.e., even.

Arranging the above data in ascending order, we obtain 10,11,11,12,13,13,14,16,16,17,17,18

Median of the data

$$M = \frac{\left(\frac{12}{2}\right)^{th} observation + \left(\frac{12}{2} + 1\right)^{th} observation}{2}$$
$$= \frac{6^{th} observation + 7^{th} observation}{2}$$
$$= \frac{13 + 14}{2}$$
$$= \frac{27}{2}$$
$$= 13.5$$

The deviations of the respective observations from the median, i.e., $x_i - M$ are -3.5, -2.5, -2.5, -1.5, -0.5, -0.5, 0.5, 2.5, 2.5, 3.5, 3.5, 4.5

The absolute values of the deviations, $|x_i - M|$ are 3.5, 2.5, 2.5, 1.5, 0.5, 0.5, 0.5, 2.5, 2.5, 3.5, 3.5, 4.5

The required mean deviation about the median is

$$M.D.(M) = \frac{\sum_{i=1}^{12} |x_i - M|}{12}$$

= $\frac{3.5 + 2.5 + 2.5 + 1.5 + 0.5 + 0.5 + 0.5 + 2.5 + 2.5 + 3.5 + 3.5 + 4.5}{12}$
= $\frac{28}{12}$
= 2.33

Question 4:

Find the mean deviation about the median for the data 36,72,46,42,60,45,53,46,51,49

Solution:

The given data is 36,72,46,42,60,45,53,46,51,49 Here, the numbers of observations are10, hence even.

Arranging the above data in ascending order, we obtain 36,42,45,46,46,49,51,53,60,72 Median of the data

$$M = \frac{\left(\frac{10}{2}\right)^{th} observation + \left(\frac{10}{2} + 1\right)^{th} observation}{2}$$
$$= \frac{5^{th} observation + 6^{th} observation}{2}$$
$$= \frac{46 + 49}{2}$$
$$= \frac{95}{2}$$
$$= 47.5$$

The deviations of the respective observations from the median, i.e., $x_i - M$ are -11.5, -5.5, -2.5, -1.5, -1.5, 1.5, 3.5, 5.5, 12.5, 24.5

The absolute values of the deviations, $|x_i - M|$ are 11.5, 5.5, 2.5, 1.5, 1.5, 1.5, 3.5, 5.5, 12.5, 24.5

The required mean deviation about the median is

$$M.D.(M) = \frac{\sum_{i=1}^{10} |x_i - M|}{10}$$

= $\frac{11.5 + 5.5 + 2.5 + 1.5 + 1.5 + 1.5 + 3.5 + 5.5 + 12.5 + 24.5}{10}$
= $\frac{70}{10}$
= 7

Question 5:

Find the mean deviation about the mean for the data

X_i	5	10	15	20	25
f_i	7	4	6	3	5

Solution:

X_i	f_i	$f_i x_i$	$ x_i - \overline{x} $	$f_i \left x_i - \overline{x} \right $
5	7	35	9	63
10	4	40	4	16
15	6	90	1	6
20	3	60	6	18
25	5	125	11	55
	25	350		158

$$N = \sum_{i=1}^{5} f_i = 25 \text{ and } \sum_{i=1}^{5} f_i x_i = 350$$

Therefore,

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{5} f_i x_i$$
$$= \frac{1}{25} \times 350$$
$$= 14$$

Mean deviation about the mean

$$M.D.(\overline{x}) = \frac{1}{N} |x_i - \overline{x}|$$
$$= \frac{1}{25} \times 158$$
$$= 6.32$$

Question 6:

Find the mean deviation about the mean for the data

x_i	10	30	50	70	90
f_i	4	24	28	16	8

Solution:

X _i	f_i	$f_i x_i$	$\left x_{i}-\overline{x}\right $	$f_i \left x_i - \overline{x} \right $
10	4	40	40	160
30	24	720	20	480
50	28	1400	0	0
70	16	1120	20	320
90	8	720	40	320
	80	4000		1280

$$N = \sum_{i=1}^{5} f_i = 80 \text{ and } \sum_{i=1}^{5} f_i x_i = 4000$$

Therefore,

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{5} f_i x_i$$
$$= \frac{1}{80} \times 4000$$
$$= 50$$

Mean deviation about the mean

$$M.D.(\overline{x}) = \frac{1}{N} \sum_{i=1}^{5} f_i \left| x_i - \overline{x} \right|$$
$$= \frac{1}{80} \times 1280$$
$$= 16$$

Question 7:

Find the mean deviation about the median for the data

x_i	5	7	9	10	12	15
f_i	8	6	2	2	2	6

Solution:

The given observations are in ascending order.

Adding a column corresponding to cumulative frequencies of the given data, we obtain the following table.

X_{i}	f_i	c.f
5	8	8
7	6	14
9	2	16
10	2	18
12	2	20
15	6	26

Here, N = 26, which is even.

Hence, Median is the mean of 13th and 14th observations. Both the observations lie in the cumulative frequency 14, for which the corresponding observation is 7.

Median
$$= \frac{13^{th}observation + 14^{th}observation}{2} = \frac{7+7}{2} = 7$$

The absolute values of the deviations, $|x_i - M|$ are

$ x_i - M $	2	0	2	3	5	8
f_i	8	6	2	2	2	6
$f_i x_i - M $	16	0	4	6	10	48

$$\sum_{i=1}^{6} f_i = 26 \text{ and } \sum_{i=1}^{6} f_i |x_i - M| = 84$$

Hence, the mean deviation about the median

$$M.D.(M) = \frac{1}{N} \sum_{i=1}^{6} f_i | x_i - M$$
$$= \frac{1}{26} \times 84$$
$$= 3.23$$

Question 8:

Find the mean deviation about the median for the data

X_i	15	21	27	30	35
f_i	3	5	6	7	8

Solution:

The given observations are in ascending order.

Adding a column corresponding to cumulative frequencies of the given data, we obtain the following table.

x _i	f_i	c.f
15	3	3
21	5	8
27	6	14
30	7	21
35	8	29

Here, N = 29, which is odd.

Median
$$=\left(\frac{29+1}{2}\right)^{th} = 15^{th}$$
 observation

This observation lies in the cumulative frequency 21, for which the corresponding observation is 30.

Therefore, Median = 30

The absolute values of the deviations, $|x_i - M|$ are

$ x_i - M $	15	9	3	0	5
f_i	3	5	6	7	8
$f_i \left x_i - M \right $	45	45	18	0	40

Here, $\sum_{i=1}^{5} f_i = 29$ and $\sum_{i=1}^{5} f_i |x_i - M| = 148$

$$M.D.(M) = \frac{1}{N} \sum_{i=1}^{5} f_i |x_i - M| = \frac{1}{29} \times 148 = 5.1$$

Question 9:

Find the mean deviation about the mean for the data

Income per day	Number of persons
0-100	4
100 - 200	8
200 - 300	9
300 - 400	10
400 – 50 <mark>0</mark>	7
500 – <mark>600</mark>	5
600 – 70 0	4
700 - 800	3

Solution:

The following table is formed.

Income per day	Number of persons f_i	$\begin{array}{c} \text{Mid-point} \\ x_i \end{array}$	$f_i x_i$	$\left x_{i}-\overline{x}\right $	$f_i \left x_i - \overline{x} \right $
0-100	4	50	200	308	1232
100 - 200	8	150	1200	208	1664
200-300	9	250	2250	108	972
300 - 400	10	350	3500	8	80

400 - 500	7	450	3150	92	644
500 - 600	5	550	2750	192	960
600 - 700	4	650	2600	292	1168
700 - 800	3	750	2250	392	1176
Total	50		17900		7896

Here,
$$N = \sum_{i=1}^{8} f_i = 50$$
 and $\sum_{i=1}^{8} f_i x_i = 17900$

Therefore,

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{8} f_i x_i$$
$$= \frac{1}{50} \times 17900$$
$$= 358$$

Hence, the mean deviation about the mean

$$M.D.(\overline{x}) = \frac{1}{N} \sum_{i=1}^{8} f_i \left| x_i - \overline{x} \right|$$
$$= \frac{1}{50} \times 7896$$
$$= 157.92$$

Question 10:

Find the mean deviation about the mean for the data

Height in cms	95-105	105 – 115	115-125	125-135	135-145	135-145
Number of boys	9	13	26	30	12	10

Solution:

The following table is formed.

Height in cms	Number of boys f_i	Mid-point x_i	$f_i x_i$	$\left x_{i}-\overline{x}\right $	$f_i \left x_i - \overline{x} \right $
95-105	9	100	900	25.3	227.7
105-115	13	110	1430	15.3	198.9
115-125	26	120	3120	5.3	137.8
125-135	30	130	3900	4.7	141
135-145	12	140	1680	14.7	176.4

145-155	10	150	1500	24.7	247
Total	100		12530		1128.8

Here,
$$N = \sum_{i=1}^{6} f_i = 100$$
 and $\sum_{i=1}^{6} f_i x_i = 12530$

Therefore,

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{6} f_i x_i$$
$$= \frac{1}{100} \times 12530$$
$$= 125.3$$

Hence, the mean deviation about the mean

$$M.D.(\overline{x}) = \frac{1}{N} \sum_{i=1}^{6} f_i |x_i - \overline{x}|$$
$$= \frac{1}{100} \times 1128.8$$
$$= 11.28$$

Question 11:

Find the mean deviation about median for the following data:

Marks	0-10	10 - 20	20-30	30-40	40-50	50-60
No. of girls	6	8	14	16	4	2

Solution:

Marks	No. of girls	c.f.	Mid-point (x_i)	$ x_i - M $	$f_i x_i - M $
0-10	6	6	5	22.85	137.1
10 - 20	8	14	15	12.85	102.8
20-30	14	28	25	2.85	39.9
30-40	16	44	35	7.15	114.4
40-50	4	48	45	17.15	68.6
50-60	2	50	55	27.15	54.3
	50				517.1

Here,
$$\sum_{i=1}^{6} f_i = 50$$
 and $\sum_{i=1}^{6} f_i |x_i - M| = 517.1$
 $l = 20, C = 14, f = 14, h = 10, N = 50$

Median,

$$= l + \frac{\frac{N}{2} - C}{f} \times h$$

= 20 + $\frac{25 - 14}{14} \times 10$
= 20 + 7.85
= 27.85

Hence, the mean deviation about median

$$M.D.(M) = \frac{1}{N} \sum_{i=1}^{6} f_i | x_i - M$$
$$= \frac{1}{50} \times 517.1$$
$$= 10.34$$

Question 12:

Calculate the mean deviation about median age for the age distribution of 100 persons given below:

Age (in years)	16 - 20	21-25	26-30	31-35	36-40	41-45	46-50	51-55
Number	5	6	12	14	26	12	16	9

[Hint: Convert the given data into continuous frequency distribution by subtracting 0.5 from the lower limit and adding 0.5 to the upper limit of each class interval]

Solution:

The given data is not continuous.

Therefore, it has to be converted into continuous frequency distribution by subtracting 0.5 from the lower limit and adding 0.5 to the upper limit of each class interval.

The table is formed as follows

Age (in years)	Number of persons f_i	c.f	Mid-point <i>x_i</i>	$ x_i - M $	$f_i x_i - M $
-------------------	-------------------------	-----	-----------------------------------	-------------	-----------------

15.5 - 20.5	5	5	18	20	100
20.5 - 25.5	6	11	23	15	90
25.5-30.5	12	23	28	10	120
30.5-35.5	14	37	33	5	70
35.5-40.5	26	63	38	0	0
40.5 - 45.5	12	75	43	5	60
45.5 - 50.5	16	91	48	10	160
50.5-55.5	9	100	53	15	135
	100				735

The class interval containing the $\left(\frac{N}{2}\right)^{th}$ or 50th item is 35.5-40.5 Therefore, 35.5-40.5 is the median class.

It is known that,

$$= l + \left(\frac{\frac{N}{2} - C}{f}\right) \times h$$

Median

Here, l = 35.5, C = 37, f = 26, h = 5, N = 100

Median,

$$M = 35.5 + \frac{50 - 37}{26} \times 5$$

= 35.5 + $\frac{13 \times 5}{26}$
= 35.5 + 2.5
= 38

Thus, mean deviation about the median is given by,

$$M.D.(M) = \frac{1}{N} \sum_{i=1}^{8} f_i |x_i - M|$$
$$= \frac{1}{100} \times 735$$
$$= 7.35$$

EXERCISE 15.2

Question 1:

Find the mean and variance for the data 6,7,10,12,13,4,8,12.

Solution:

The given data is 6,7,10,12,13,4,8,12

Mean of the data

$$\overline{x} = \frac{\sum_{i=1}^{8} x_i}{n}$$

= $\frac{6+7+10+12+13+4+8+12}{8}$
= $\frac{72}{8}$
= 9

The following table is obtained from the given above data

X_i	$(x_i - \overline{x})$	$(x_i - \overline{x})^2$
6	-3 -2	9
7	-2	4
10	1	1
12	3	9
13	4	16
4	-5	25
8	-1	1
12	3	9
		74

Variance of the data

$$\left(\sigma^{2}\right) = \frac{1}{n} \sum_{i=1}^{8} \left(x_{i} - \overline{x}\right)^{2}$$
$$= \frac{1}{8} \times 74$$
$$= 9.25$$

Question 2:

Find the mean and variance for the first n natural numbers.

Solution:

The mean of first n natural numbers is calculated as follows.

	n(n+1)	
Sum of all observations	2	n+1
Number of observations	n	2

Variance,

$$\begin{aligned} \left(\sigma^{2}\right) &= \frac{1}{n} \sum_{i=1}^{n} \left(x_{i} - \overline{x}\right)^{2} \\ &= \frac{1}{n} \sum_{i=1}^{n} \left[x_{i} - \left(\frac{n+1}{2}\right)\right]^{2} \\ &= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \sum_{i=1}^{n} 2\left(\frac{n+1}{n}\right) x_{i} + \frac{1}{n} \sum_{i=1}^{n} \left(\frac{n+1}{2}\right)^{2} \\ &= \frac{1}{n} \frac{n(n+1)(2n+1)}{6} - \left(\frac{n+1}{n}\right) \left[\frac{n(n+1)}{2}\right] + \frac{(n+1)^{2}}{4n} \times n \\ &= \frac{(n+1)(2n+1)}{6} - \frac{(n+1)^{2}}{2} + \frac{(n+1)^{2}}{4} \\ &= \frac{(n+1)(2n+1)}{6} - \frac{(n+1)^{2}}{4} \\ &= (n+1) \left[\frac{4n+2-3n-3}{12}\right] \\ &= \frac{(n+1)(n-1)}{12} \\ &= \frac{n^{2}-1}{12} \end{aligned}$$

Question 3:

Find the mean and variance for the first 10 multiples of 3.

Solution:

The first ten multiples of 3 are 3,6,9,12,15,18,21,24,27,30

Here, the number of observations, n = 10

Mean of the data

$$\overline{x} = \frac{\sum_{i=1}^{10} x_i}{10}$$
$$= \frac{165}{10}$$
$$= 16.5$$

The following table is obtained for the first 10 multiples of 3

X _i	$(x_i - \overline{x})$	$(x_i - \overline{x})^2$
3	-13.5	182.25
6	-10.5	110.25
9	-7.5	56.25
12	-4.5	20.25
15	-1.5	2.25
18	1.5	2.25
21	4.5	20.25
24	7.5	56.25
27	10.5	110.25
30	13.5	182.25
		742.5

Variance

$$(\sigma^{2}) = \frac{1}{n} \sum_{i=1}^{10} (x_{i} - \overline{x})^{2}$$
$$= \frac{1}{10} \times 742.5$$
$$= 74.25$$

Question 4:

Find the mean and variance for the data

x_i	6	10	14	18	24	28	30
f_i	2	4	7	12	8	4	3

Solution:

X_i f_i $f_i X_i$ $x_i - \overline{x}$ $(x_i - \overline{x})^2$ $f_i (x_i - \overline{x})^2$
--

6	2	12	-13	169	338
10	4	40	-9	81	324
14	7	98	-5	25	175
18	12	216	-1	1	12
24	8	192	5	25	200
28	4	112	9	81	324
30	3	90	11	121	363
	40	760			1736

Here,

$$N = 40, \sum_{i=1}^{7} f_{1}x_{i} = 760$$
$$\therefore \overline{x} = \frac{\sum_{i=1}^{7} f_{1}x_{i}}{N} = \frac{760}{40} = 19$$

Variance, $(\sigma^2) = \frac{1}{n} \sum_{i=1}^{7} (x_i - \overline{x})^2 = \frac{1}{40} \times 1736 = 43.4$

Question 5:

Find the mean and variance for the data

X _i	92	93	97	98	102	104	109
f_i	3	2	3	2	6	3	3

Solution:

X_i	f_i	$f_i x_i$	$x_i - \overline{x}$	$\left(x_i - \overline{x}\right)^2$	$f_i\left(x_i - \overline{x}\right)^2$
92	3	276	-8	64	192
93	2	186	-7	49	98
97	3	291	-3	9	27
98	2	196	-2	4	8
102	6	612	2	4	24
104	3	312	4	16	48
109	3	327	9	81	243

Here,

2200	640
------	-----

Here,
$$N = 22$$
 and $\sum_{i=1}^{7} f_i x_i = 2200$
Therefore,

 $\overline{x} = \frac{1}{n} \sum_{i=1}^{7} f_i x_i$ $= \frac{1}{22} \times 2200$ =100

Variance

$$(\sigma^2) = \frac{1}{N} \sum_{i=1}^{7} (x_i - \overline{x})^2$$
$$= \frac{1}{22} \times 640$$
$$= 29.09$$

Question 6:

Find the mean and standard deviation using shortcut method.

X_i	60	61	62	63	64	65	66	67	68
					25				

Solution:

X_i	f_i	$f_i = \frac{x_i - 64}{1}$	y_{1}^{2}	$f_1 y_1$	$f_1 y_1^2$
60	2	-4	16	-8	32
61	- 1	-3	9	-3	9
62	12	-2	4	-24	48
63	29	-1	1	-29	29
64	25	0	0	0	0
65	12	1	1	12	12
66	10	2	4	20	40
67	4	3	9	12	36
68	5	4	16	20	80
	100	220		0	286

$$\overline{x} = A + \frac{\sum_{i=1}^{9} f_i y_i}{N} \times h$$
$$= 64 + \frac{0}{100} \times 1$$
$$= 64$$

$$\sigma^{2} = \frac{h^{2}}{N^{2}} \left[N \sum_{i=1}^{9} f_{i} y_{i}^{2} - \left(\sum_{i=1}^{9} f_{i} y_{i} \right)^{2} \right]$$
$$= \frac{1}{100^{2}} [100 \times 286 - 0]$$
$$= 2.86$$

Standard deviation,

1

$$(\sigma) = \sqrt{2.86}$$
$$= 1.69$$

Question 7:

Find the mean and variance for the following frequency distribution.

Classes	0-30	30-60	60 - 90	90-120	120-150	150-180	180 - 210
Frequencies	2	3	5	10	3	5	2

Solution:

Class	Frequency f_i	$\frac{\text{Mid-point}}{(x_i)}$	$y_i = \frac{x_i - 105}{30}$	y_i^2	$f_i y_i$	$f_i y_i^2$
0-30	2	15	-3	9	-6	18
30 - 60	3	45	-2	4	-6	12
60 - 90	5	75	-1	1	-5	5
90-120	10	105	0	0	0	0
120-150	3	135	1	1	3	3
150 - 180	5	165	2	4	10	20
180 - 210	2	195	3	9	6	18
					2	76

$$\overline{x} = A + \frac{\sum_{i=1}^{7} f_i y_i}{N} \times h$$
$$= 105 + \frac{2}{30} \times 30$$
$$= 105 + 2$$
$$= 107$$

$$\sigma^{2} = \frac{h^{2}}{N^{2}} \left[N \sum_{i=1}^{9} f_{i} y_{i}^{2} - \left(\sum_{i=1}^{9} f_{i} y_{i} \right)^{2} \right]$$
$$= \frac{(30)^{2}}{(30)^{2}} \left[30 \times 76 - (2)^{2} \right]$$
$$= 2280 - 4$$
$$= 2276$$

Question 8:

Find the mean and variance for the following frequency distribution.

Classes	0-10	10 - 20	20-30	30 - 40	40 - 50
Frequencies	5	8	15	16	6

Solution:

Class	Frequency f_i	$\frac{\text{Mid-point}}{(x_i)}$	$y_i = \frac{x_i - 25}{10}$	y_i^2	$f_i y_i$	$f_i y_i^2$
0-10	5	5	-2	4	-10	20
10 - 20	8	15	-1	1	-8	8
20 - 30	15	25	0	0	0	0
30 - 40	16	35	1	1	16	16
40 - 50	6	45	2	4	12	24
	50				10	68

$$\overline{x} = A + \frac{\sum_{i=1}^{5} f_i y_i}{N} \times h$$
$$= 25 + \frac{10}{50} \times 10$$
$$= 25 + 2$$
$$= 27$$

$$(\sigma^{2}) = \frac{h^{2}}{N^{2}} \left[N \sum_{i=1}^{5} f_{i} y_{i}^{2} - \left(\sum_{i=1}^{5} f_{i} y_{i} \right)^{2} \right]$$
$$= \frac{(10)^{2}}{(50)^{2}} \left[50 \times 68 - (10)^{2} \right]$$
$$= \frac{1}{25} [3400 - 100]$$
$$= \frac{3300}{25}$$
$$= 132$$

Question 9:

Find the mean, variance and standard deviation using shortcut method.

Height in cms	Number of children
70 – 75	3
75-80	4
80-85	7
85-90	7
90-95	15
95-100	9
100 - 105	6
105 - 110	6
110-115	3

Solution:

Class	Frequency f_i	$\begin{array}{c} \text{Mid-point} \\ (x_i) \end{array}$	$y_i = \frac{x_i - 92.5}{5}$	y_i^2	$f_i y_i$	$f_i y_i^2$	
-------	-----------------	--	------------------------------	---------	-----------	-------------	--

70-75	3	72.5	-4	16	-12	48
75-80	4	77.5	-3	9	-12	36
80-85	7	82.5	-2	4	-14	28
85-90	7	87.5	-1	1	-7	7
90-95	15	92.5	0	0	0	0
95-100	9	97.5	1	1	9	9
100-105	6	102.5	2	4	12	24
105-110	6	107.5	3	9	18	54
110-115	3	112.5	4	16	12	48
	60				6	254

Mean,

$$\overline{x} = A + \frac{\sum_{i=1}^{9} f_i y_i}{N} \times h$$
$$= 92.5 + \frac{6}{60} \times 5$$
$$= 92.5 + 0.5$$
$$= 93$$

Variance,

$$(\sigma^{2}) = \frac{h^{2}}{N^{2}} \left[N \sum_{i=1}^{9} f_{i} y_{i}^{2} - \left(\sum_{i=1}^{9} f_{i} y_{i} \right)^{2} \right]$$
$$= \frac{(5)^{2}}{(60)^{2}} \left[60 \times 254 - (6)^{2} \right]$$
$$= \frac{25}{3600} \times 15204$$
$$= 105.58$$

Standard deviation,

$$(\sigma) = \sqrt{105.58}$$
$$= 10.27$$

Question10:

The diameters of the circles (in mm) drawn in a design are given below.

Diameters	No. of circles
33-36	15
37 - 40	17
41-44	21
45-48	22
49 - 52	25

Calculate the standard deviation and mean diameter of the circles.

[Hint: First make the data continuous by making the classes as 32.5-36.5, 36.5-40.5, 40.5-44.5, 44.5 - 48.5, 48.5 - 52.5 and then proceed.]

Solution:

Class interval	Frequency f_i	$\begin{array}{c} \text{Mid-point} \\ (x_i) \end{array}$	$y_i = \frac{x_i - 42.5}{4}$	y_i^2	$f_i y_i$	$f_i y_i^2$
33-36	15	34.5	-2	4	-30	60
37 - 40	17	38.5	-1	1	-17	17
41-44	21	42.5	0	0	0	0
45-48	22	46.5	1	1	22	22
49-52	25	50.5	2	4	50	100
	100				25	199

Here, N = 100, h = 4

Let the assumed mean, A be 42.5

$$\overline{x} = A + \frac{\sum_{i=1}^{5} f_i y_i}{N} \times h$$

= 42.5 + $\frac{25}{100} \times 4$
= 42.5 + 1
= 43.5

$$\sigma^{2} = \frac{h^{2}}{N^{2}} \left[N \sum_{i=1}^{5} f_{i} y_{i}^{2} - \left(\sum_{i=1}^{5} f_{i} y_{i} \right)^{2} \right]$$
$$= \frac{16}{10000} \left[100 \times 199 - (25)^{2} \right]$$
$$= \frac{16}{10000} \left[19900 - 625 \right]$$
$$= \frac{16}{10000} \times 19275$$
$$= 30.84$$

Standard deviation,

$$(\sigma) = \sqrt{30.84}$$
$$= 5.55$$

EXERCISE 15.3

Question 1:

From the data given below state which group is more variable, A or B?

Marks	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80
Group A	9	17	32	33	40	10	9
Group B	10	20	30	25	43	15	7

Solution:

Standard deviation of Group A is calculated as follows.

Marks	Group A f_i	Mid-point x_i	$y_i = \frac{x_i - 45}{10}$	y_i^2	$f_i y_i$	$f_i y_i^2$
10-20	9	15	-3	9	-27	81
20-30	17	25	-2	4	-34	68
30 - 40	32	35	-1	1	-32	32
40 - 50	33	45	0	0	0	0
50-60	40	55	1	1	40	40
60 - 70	10	65	2	4	20	40
70 - 80	9	75	3	9	27	81
	150				-6	342

Here, N = 150, h = 10, A = 45Mean,

$$\overline{x} = A + \frac{\sum_{i=1}^{7} f_i y_i}{N} \times h$$
$$= 45 + \frac{(-6)}{150} \times 10$$
$$= 45 - 0.4$$
$$= 44.6$$

Variance,

$$\left(\sigma_{1}^{2}\right) = \frac{h^{2}}{N^{2}} \left[N \sum_{i=1}^{7} f_{i} y_{i} - \left(\sum_{i=1}^{7} f_{i} y_{i}\right)^{2} \right]$$
$$= \frac{100}{22500} \left[150 \times 342 - \left(-6\right)^{2} \right]$$
$$= \frac{1}{225} \times 51264$$
$$= 227.84$$

Standard deviation,

$$(\sigma_1) = \sqrt{227.84}$$

= 15.09

Standard deviation of Group B is calculated as follows.

Marks	Group B f_i	Mid-point x_i	$y_i = \frac{x_i - 45}{10}$	y_i^2	$f_i y_i$	$f_i y_i^2$
10-20	10	15	-3	9	-30	90
20 - 30	20	25	-2	4	-40	80
30 - 40	30	35	-1	1	-30	30
40 - 50	25	45	0	0	0	0
50-60	43	55	1	1	43	43
60 - 70	15	65	2	4	30	60
70-80	7	75	3	9	21	63
	150				-6	366

Mean,

$$\overline{x} = A + \frac{\sum_{i=1}^{7} f_i y_i}{N} \times h$$
$$= 45 + \frac{(-6)}{150} \times 10$$
$$= 45 - 0.4$$
$$= 44.6$$

Variance,

$$\sigma_{2}^{2} = \frac{h^{2}}{N^{2}} \left[N \sum_{i=1}^{7} f_{i} y_{i} - \left(\sum_{i=1}^{7} f_{i} y_{i} \right)^{2} \right]$$
$$= \frac{100}{22500} \left[150 \times 366 - (-6)^{2} \right]$$
$$= \frac{1}{225} \times 54864$$
$$= 243.84$$

Standard deviation,

$$(\sigma_2) = \sqrt{243.84}$$

= 15.61

Since the mean of both the groups is same, the group with greater standard deviation will be more variable.

Thus, group B has more variability in the marks.

Question 2:

From the prices of shares of X and Y below, find out which is more stable in value:

Х	35	54	52	53	56	58	52	50	51	49
Y	108	107	105	105	106	107	104	103	104	101

Solution:

The prices of the shares X are 35, 54, 52, 53, 56, 58, 52, 50, 51, 49Here, the number of observations, N = 10

Mean,

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{10} x_i$$
$$= \frac{1}{10} \times 510$$
$$= 51$$

The following table is obtained corresponding to shares X.

x_i	$(x_i - \overline{x})$	$(x_i - \overline{x})^2$
35	-16	256
54	3	9
52	1	1
53	2	4
56	5	25
58	7	49
52	1	1
50	-1	1
51	0	0
49	-2	4
		350

Variance,

$$(\sigma_1^2) = \frac{1}{N} \sum_{i=1}^{10} (x_i - \overline{x})^2$$
$$= \frac{1}{10} \times 350$$
$$= 35$$

Standard deviation,

$$(\sigma_1) = \sqrt{35} = 5.91$$

C.V.(Shares X) =
$$\frac{\sigma_1}{X} \times 100$$

= $\frac{5.91}{51} \times 100$
= 11.58

The prices of the shares Y are 108,107,105,105,106,107,104,103,104,101Here, the number of observations, N = 10

Mean,

$$\overline{y} = \frac{1}{N} \sum_{i=1}^{10} y_i$$
$$= \frac{1}{10} \times 1050$$
$$= 105$$

The following table is obtained corresponding to shares Y.

${\mathcal{Y}}_i$	$(y_i - \overline{y})$	$(y_i - \overline{y})^2$
108	3	9
107	2	4
105	0	0
105	0	0
106	1	1
107	2	4
104	-1	1
103	-2	4
104	-1	1
101	-4	16
		40

Variance,

$$(\sigma_{2}^{2}) = \frac{1}{N} \sum_{i=1}^{10} (y_{i} - \overline{y})^{2}$$
$$= \frac{1}{10} \times 40$$
$$= 4$$

Standard deviation,

$$(\sigma_2) = \sqrt{4} = 2$$

C.V.(Shares Y) =
$$\frac{\sigma_2}{X} \times 100$$

= $\frac{2}{105} \times 100$
= 1.9

C.V of prices of shares X is greater than the C.V of prices of shares Y.

Thus, the prices of shares Y are more stable than the prices of shares X.

Question 3:

An analysis of monthly wages paid to workers in two firms A and B, belonging to the same industry, gives the following results:

	Firm A	Firm B
No. of wages earners	586	648
Mean of monthly wages	Rs. 5253	Rs. 5253
Variance of the distribution of wages	100	121

(i) Which firm A or B pays larger amount as monthly wages?

(ii) Which firm, A or B, shows greater variability in individual wages?

Solution:

(i) Monthly wages of firm A= Rs 5253Number of wage earners in firm A=586

 \therefore Total amount paid= Rs. 5253×586

Monthly wages of firm B=Rs 5253Number of wage earners in firm B=648 \therefore Total amount paid= Rs. 5253×648

Thus, firm B pays the larger amount as monthly wages as the number of wage earners in firm B are more than the number of wage earners in firm A.

(ii) Variance of the distribution of wages in firm A $(\sigma_1^2) = 100$

 \therefore Standard deviation of the distribution of wages in firm $A(\sigma_1) = \sqrt{100} = 10$

Variance of the distribution of wages in firm B $(\sigma_1^2) = 121$

: Standard deviation of the distribution of wages in firm $A(\sigma_1) = \sqrt{121} = 11$ The mean of monthly wages of both the firms is same. Therefore, the firm with greater standard deviation will have more variability.

Thus, firm B has greater variability in the individual wages.

Question 4:

The following is the record of goals scored by team A in a football session:

No. of goals scored (0	1	2	3	4	
-----------------------	---	---	---	---	---	--

No. of matches	1	9	7	5	3	
----------------	---	---	---	---	---	--

For the team B, mean number of goals scored per math was ² with a standard deviation of 1.25 goals. Find which team may be considered more consistent?

Solution:

The mean and standard deviation of goals scored by team A are calculated as follows.

No. of goals scored	No. of matches	$f_i x_i$	x_i^2	$f_i x_i^2$
0	1	0	0	0
1	9	9	1	9
2	7	14	4	28
3	5	15	9	45
4	3	12	16	48
	25	50		130

Mean,

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{5} f_i x_i$$
$$= \frac{50}{25}$$
$$= 2$$

Thus, the mean of both the teams is same.

$$\sigma = \frac{1}{N} \sqrt{N \sum f_i x_i^2 - \left(\sum f_i x_i\right)^2}$$

= $\frac{1}{25} \sqrt{25 \times 130 - (50)^2}$
= $\frac{1}{25} \sqrt{750}$
= $\frac{1}{25} \times 27.38$
= 1.09

The standard deviation of team B is 1.25 goals.

The average number of goals scored by both the teams is same i.e., 2. Therefore, the team with lower standard deviation will be more consistent.

Thus, team A is more consistent than team B.

Question 5:

The sum and sum of squares corresponding to length X (in cms) and weight y (in gms) of 50 plant products are given below.

$$\sum_{i=1}^{50} x_i = 212, \ \sum_{i=1}^{50} x_i^2 = 902.8, \ \sum_{i=1}^{50} y_i = 261, \ \sum_{i=1}^{50} y_i^2 = 1457.6$$

Which is more varying, the length or the weight?

Solution:

$$\sum_{i=1}^{50} x_i = 212, \sum_{i=1}^{50} x_i^2 = 902.8$$

Here, $N = 50$

Mean,

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{50} x_i$$
$$= \frac{212}{50}$$
$$= 4.24$$

(

Variance,

$$\sigma_{1}^{2} = \frac{1}{N} \sum_{i=1}^{50} (x_{i} - \overline{x})^{2}$$

$$= \frac{1}{50} \sum_{i=1}^{50} (x_{i} - 4.24)^{2}$$

$$= \frac{1}{50} \sum_{i=1}^{50} [x_{i}^{2} - 8.48x_{i} + 17.97]$$

$$= \frac{1}{50} \left[\sum_{i=1}^{50} x_{i}^{2} - 8.48 \sum_{i=1}^{50} x_{i} + 17.97 \times 50 \right]$$

$$= \frac{1}{50} [902.8 - 8.48 \times (212) + 898.5]$$

$$= \frac{1}{50} [1801.3 - 1797.76]$$

$$= \frac{1}{50} \times 3.54$$

$$= 0.07$$

Standard variation $\sigma_2(length) = \sqrt{0.07} = 0.26$

$$C.V(length) = \frac{standard deviation}{mean} \times 100$$
$$= \frac{0.26}{4.24} \times 100$$
$$= 6.13$$

$$\sum_{i=1}^{50} y_i = 261, \sum_{i=1}^{50} y_i^2 = 1457.6$$

Here, N = 50

Mean,

$$\overline{y} = \frac{1}{N} \sum_{i=1}^{50} y_i$$
$$= \frac{261}{50}$$
$$= 5.22$$

Variance,

$$(\sigma_{2}^{2}) = \frac{1}{N} \sum_{i=1}^{50} (y_{i} - \overline{y})^{2}$$

$$= \frac{1}{50} \sum_{i=1}^{50} (y_{i} - 5.22)^{2}$$

$$= \frac{1}{50} \sum_{i=1}^{50} [y_{i}^{2} - 10.44y_{i} + 27.24]$$

$$= \frac{1}{50} \left[\sum_{i=1}^{50} y_{i}^{2} - 10.44 \sum_{i=1}^{50} y_{i} + 27.24 \times 50 \right]$$

$$= \frac{1}{50} \left[1457.6 - 10.44 \times (261) + 1362 \right]$$

$$= \frac{1}{50} \left[2819.6 - 2724.84 \right]$$

$$= \frac{1}{50} \times 94.76$$

$$= 1.89$$

Standard variation σ_2 (weight) = $\sqrt{1.89}$ = 1.37

$$C.V(weight) = \frac{standard deviation}{mean} \times 100$$
$$= \frac{1.37}{5.22} \times 100$$
$$= 26.24$$

Thus, C.V of weights is greater than C.V of lengths.

Therefore, weights vary more than the lengths.

MISCELLANEOUS EXERCISE

Question 1:

The mean and variance of eight observations are 9 and 9.25, respectively. If six of the observations are 6,7,10,12,12 and 13, find the remaining two observations.

Solution:

Let the remaining two observations be x and y. Therefore, the observations are 6,7,10,12,12,13,x,y

Mean,

$$\overline{x} = \frac{6+7+10+12+12+13+x+y}{8}$$

$$9 = \frac{60+x+y}{8}$$

$$60+x+y=72$$

$$x+y=12 \qquad \dots (1)$$

Variance,

$$9.25 = \frac{1}{n} \sum_{i=1}^{8} (x_i - \overline{x})^2$$

$$9.25 = \frac{1}{8} \Big[(-3)^2 + (-2)^2 + (1)^2 + (3)^2 + (3)^2 + (4)^2 + x^2 + y^2 - 2 \times 9(x+y) + 2 \times (9)^2 \Big]$$

$$9.25 = \frac{1}{8} \Big[9 + 4 + 1 + 9 + 9 + 16 + x^2 + y^2 - 18(12) + 162 \Big]$$

$$9.25 = \frac{1}{8} \Big[48 + x^2 + y^2 - 216 + 162 \Big]$$

$$9.25 = \frac{1}{8} \Big[x^2 + y^2 - 6 \Big]$$

$$x^2 + y^2 = 80 \qquad \dots (2)$$

From (1), we obtain

$$x^2 + y^2 + 2xy = 144 \qquad \dots (3)$$

From (2)_{and} (3), we obtain 2xy = 64 ...(4)

Subtracting $(4)_{\text{from}}(2)$, we obtain

$$x^{2} + y^{2} - 2xy = 16$$

x - y = ±4 ...(5)

Therefore, from (1) and (5), we obtain x = 8 and y = 4, when x - y = 4x = 4 and y = 8, when x - y = -4

Thus, the remaining observations are 4 and 8.

Question 2:

The mean and variance of seven observations are 8 and 16, respectively. If six of the observations are 2,4,10,12 and 14, find the remaining two observations.

Solution:

Let the remaining two observations be x and y. Therefore, the observations are 2,4,10,12,14, x, y

Mean,

$$\overline{x} = \frac{2+4+10+12+14+x+y}{7}$$

$$8 = \frac{42+x+y}{7}$$

$$42+x+y = 56$$

$$x+y = 14$$
...(1)

Variance,

$$16 = \frac{1}{n} \sum_{i=1}^{7} (x_i - \overline{x})^2$$

$$16 = \frac{1}{7} \Big[(-6)^2 + (-4)^2 + (2)^2 + (4)^2 + (6)^2 + x^2 + y^2 - 2 \times 8(x+y) + 2 \times (8)^2 \Big]$$

$$16 = \frac{1}{7} \Big[36 + 16 + 4 + 16 + 36 + x^2 + y^2 - 16(14) + 2(64) \Big]$$

$$16 = \frac{1}{7} \Big[108 + x^2 + y^2 - 224 + 128 \Big]$$

$$16 = \frac{1}{7} \Big[12 + x^2 + y^2 \Big]$$

$$\Rightarrow x^2 + y^2 = 100.....(2)$$

From ⁽¹⁾, we obtain
$$x^{2} + y^{2} + 2xy = 196$$
 ...(3)

From (2) and (3), we obtain 2xy = 196 - 1002xy = 96(4)

Subtracting (4) from (2), we obtain

$$x^{2} + y^{2} - 2xy = 100 - 96$$

 $(x - y)^{2} = 4$
 $x - y = \pm 2$...(5)

Therefore, from (1) and (5), we obtain x = 8 and y = 6, when x - y = 2x = 6 and y = 8, when x - y = -2

Thus, the remaining observations are 6 and 8.

Question 3:

The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.

Solution:

Let the observations be x_1, x_2, x_3, x_4, x_5 and x_6 . It is given that the mean is8 and standard deviation is 4.

Mean,

$$\overline{x} = \frac{x_1 + x_2 + x_3 + x_4 + x_5 + x_6}{6} = 8 \qquad \dots (1)$$

If each observation is multiplied by 3 and the resulting observations are \mathcal{Y}_i , then

$$y_i = 3x_i$$
 i.e., $x_i = \frac{1}{3}y_i$, for $i = 1$ to 6

Therefore, new mean,

$$\overline{y} = \frac{y_1 + y_2 + y_3 + y_4 + y_5 + y_6}{6}$$

= $\frac{3(x_1 + x_2 + x_3 + x_4 + x_5 + x_6)}{6}$
= 3×8 ...(from 1)
= 24

Standard deviation,

$$(\sigma) = \sqrt{\frac{1}{n} \sum_{i=1}^{6} (x_i - \overline{x})^2}$$
$$(4)^2 = \frac{1}{6} \sum_{i=1}^{6} (x_i - \overline{x})^2$$
$$\sum_{i=1}^{6} (x_i - \overline{x})^2 = 96 \qquad \dots (2)$$

From (1) and (2), it can be observed that, $\overline{y} = 3\overline{x}$ and $\overline{x} = \frac{1}{3}\overline{y}$

Substituting the values of x_1 and \overline{x} in (2), we obtain

$$\sum_{i=1}^{6} \left(\frac{1}{3} y_i - \frac{1}{3} \overline{y} \right)^2 = 96$$
$$\sum_{i=1}^{6} \left(y_i - \overline{y} \right)^2 = 864$$

Therefore, variance of new observations is $\left(\frac{1}{6} \times 864\right) = 144$

Hence, the standard deviation of new observations is $\sqrt{144} = 12$

Question 4:

Given that \overline{x} is the mean and σ^2 is the variation of n observations x_1, x_2, \dots, x_n , Prove that the mean and variance of the observations ax_1, ax_2, \dots, ax_n are $a\overline{x}$ and $a^2\sigma^2$, respectively $(a \neq 0)$.

Solution:

The given n observations are $x_1, x_2, ..., x_n$ Mean = \overline{x} Variance== σ^2

Therefore,

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} y_{i} \left(x_{i} - \overline{x} \right)^{2} \qquad \dots (1)$$

If each observation is multiplied by a and the new observations are \mathcal{Y}_i , then

 $y_i = ax_i$ i.e., $x_i = \frac{1}{a}y_i$ Hence,

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$= \frac{1}{n} \sum_{i=1}^{n} a x_i$$

$$= \frac{a}{n} \sum_{i=1}^{n} x_i$$

$$= a \overline{x} \qquad \left(\because \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \right)$$

Therefore, mean of the observations, $ax_1, ax_2, ..., ax_n$ is $a\overline{x}$ Substituting the values of x_i and \overline{x} in (1), we obtain

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{a} y_{i} - \frac{1}{a} \overline{y} \right)^{2}$$
$$a^{2} \sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(y_{i} - \overline{y} \right)^{2}$$

Thus, the variance of the observations, ax_1, ax_2, \dots, ax_n , is $a^2\sigma^2$

Question 5:

The mean and standard deviation of 20 observations are found to be 10 and ², respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:

- (i) If wrong item is omitted.
- (ii) If it is replaced by 12.

Solution:

(i) Number of observations (n) = 20Incorrect mean =10 Incorrect standard deviation = 2

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{20} x_i$$

$$10 = \frac{1}{20} \sum_{i=1}^{20} x_i$$

$$\sum_{i=1}^{20} x_i = 200$$

That is, incorrect sum of observations = 200Correct sum of observations = 200 - 8 = 192

Therefore, correct mean $=\frac{\text{correct sum}}{19} = \frac{192}{19} = 10.1$

Standard deviation,

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \frac{1}{n^2} \left(\sum_{i=1}^{n} x_i \right)^2} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2 - (\overline{x})^2}$$

$$2 = \sqrt{\frac{1}{20} Incorrect} \sum_{i=1}^{n} x_i^2 - (10)^2$$

$$4 = \frac{1}{20} Incorrect \sum_{i=1}^{n} x_i^2 - 100$$

$$Incorrect \sum_{i=1}^{n} x_i^2 = 2080$$

2

Hence, $Correct \sum_{i=1}^{n} x_i^2 = Incorrect \sum_{i=1}^{n} x_i^2 - (8)^2$

= 2080 - 64= 2016

Correct standard deviation

$$=\sqrt{\frac{Correct\sum_{i=1}^{n} x_i^2}{n} - (correct mean)^2}$$

$$=\sqrt{\frac{2016}{19} - \left(\frac{192}{19}\right)^2}$$

$$=\sqrt{\frac{1440}{361}}$$

$$=\sqrt{3.988}$$

$$=1.99$$

(ii) When 8 is replaced by 12, Incorrect sum of observations = 200Correct sum of observations = 200 - 8 + 12 = 204

 $=\frac{correct\ sum}{20}=\frac{204}{20}=10.2$ Hence, Correct mean

Standard deviation,

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \frac{1}{n^2} \left(\sum_{i=1}^{n} x_i\right)^2} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \left(\overline{x}\right)^2}$$

$$2 = \sqrt{\frac{1}{20} Incorrect} \sum_{i=1}^{n} x_i^2 - (10)^2$$

$$4 = \frac{1}{20} Incorrect \sum_{i=1}^{n} x_i^2 - 100$$

$$Incorrect \sum_{i=1}^{n} x_i^2 = 2080$$

$$Incorrect \sum_{i=1}^{n} x_i^2 = 2080$$

= 2160

Correct standard deviation
$$= \sqrt{\frac{Correct \sum x_i^2}{n} - (correct mean)^2}$$
$$= \sqrt{\frac{2160}{20} - (10.2)^2}$$
$$= \sqrt{108 - 104.04}$$
$$= \sqrt{3.96}$$
$$= 1.98$$

Question 6:

The mean and standard deviation of marks obtained by 50 students of a class in three subjects, Mathematics, Physics and Chemistry are given below:

Subject	Mathematics	Physics	Chemistry
Mean	42	32	40.9
Standard deviation	12	15	20

Which of the three subjects shows the highest variability in marks and which shows the lowest?

Solution:

Standard deviation of mathematics =12 Standard deviation of Physics =15 Standard deviation of Chemistry =20

The coefficient of variation (C.V) is given by $\frac{standard \ deviation}{mean} \times 100$ $C.V (Mathematics) = \frac{12}{42} \times 100 = 28.57$ $C.V (Physics) = \frac{15}{32} \times 100 = 46.87$ $C.V (Chemistry) = \frac{20}{40.9} \times 100 = 48.89$

The subject with greater C.V is more variable than others.

Therefore, the highest variability in marks is in Chemistry and the lowest variability in marks is in Mathematics.

Question 7:

The mean and standard deviation of a group of 100 observations were found to be 20 and 3, respectively. Later on it was found that three observations were incorrect, which were recorded as 21,21 and 18. Find the mean and standard deviation if the incorrect observations are omitted.

Solution:

Number of observations =100

Incorrect mean $(\bar{x}) = 20$ Incorrect standard deviation $(\sigma) = 3$ $20 = \frac{1}{100} \sum_{i=1}^{100} x_i$ $\sum_{i=1}^{100} x_i = 20 \times 100$ = 2000Incorrect sum of observations = 2000

Correct sum of observations = 2000 - 21 - 21 - 18 = 2000 - 60 = 1940

Therefore, Correct mean $=\frac{correct \ sum}{100-3} = \frac{1940}{97} = 20$

Standard deviation

$$(\sigma) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i - \frac{1}{n^2} \left(\sum_{i=1}^{n} x_i\right)^2} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \left(\overline{x}\right)^2}$$

$$\Rightarrow 3 = \sqrt{\frac{1}{100} \times Incorrect} \sum_{i=1}^{n} x_i^2 - (20)^2$$

$$\Rightarrow Incorrect \sum_{i=1}^{n} x_i^2 = 100(9 + 400) = 40900$$
Correct $\sum_{i=1}^{n} x_i^2 - (21)^2 - (21)^2 - (18)^2$

$$Correct \sum_{i=1}^{n} x_i^2 = Incorrect \sum_{i=1}^{n} x_i^2 - (21)^2 - (21)^2 - (18)^2$$

= 40900 - 441 - 441 - 324
= 39694

Correct standard deviation

$$= \sqrt{\frac{Correct \sum x_i^2}{n} - (Correct mean)^2}$$

= $\sqrt{\frac{39694}{97} - (20)^2}$
= $\sqrt{409.216 - 400}$
= $\sqrt{9.216}$
= 3.036

When you learn math in an interesting way, you never forget.

25 Million

Math classes & counting

100K+

Students learning Math the right way

20+ Countries

Present across USA, UK, Singapore, India, UAE & more.

Why choose Cuemath?

"Cuemath is a valuable addition to our family. We love solving puzzle cards. My daughter is now visualizing maths and solving problems effectively!" "Cuemath is great because my son has a one-on-one interaction with the teacher. The instructor has developed his confidence and I can see progress in his work. One-on-one interaction is perfect and a great bonus." "I appreciate the effort that miss Nitya puts in to help my daughter understand the best methods and to explain why she got a problem incorrect. She is extremely patient and generous with Miranda."

- Gary Schwartz

- Kirk Riley

- Barbara Cabrera

Get the Cuemath advantage

Book a FREE trial class