

Come experience the Cuemath methodology and ensure your child stays ahead at math this summer.

Adaptive

Platform

Interactive Visual

Simulations

Personalized Attention

For Grades 1 - 10

LIVE online classes by trained and certified experts.

Get the Cuemath advantage

Book a FREE trial class

NCERT Solutions Class 11 Maths Chapter 2 Relations and Functions

Question 1:

If $\left(\frac{x}{3}+1, y-\frac{2}{3}\right) = \left(\frac{5}{3}, \frac{1}{3}\right)$, find the values of x and y.

Solution:

It is given that $\left(\frac{x}{3}+1, y-\frac{2}{3}\right) = \left(\frac{5}{3}, \frac{1}{3}\right)$.

Since the ordered pairs are equal, the corresponding elements will also be equal.

Therefore, $\frac{x}{3} + 1 = \frac{5}{3}$ and $y - \frac{2}{3} = \frac{1}{3}$

$$\frac{x}{3} + 1 = \frac{5}{3}$$

$$\Rightarrow \frac{x}{3} = \frac{5}{3} - 1$$

$$\Rightarrow \frac{x}{3} = \frac{5 - 3}{3}$$

$$\Rightarrow \frac{x}{3} = \frac{2}{3}$$

$$\Rightarrow y = \frac{1}{3} + \frac{2}{3}$$

$$\Rightarrow x = 2$$
 and
$$\Rightarrow y = 1$$

Hence, x = 2 and y = 1

Question 2:

If the set A has 3 elements and the set $B = \{3, 4, 5\}$, then find the number of elements in $(A \times B)_2$

Solution:

It is given that set A has 3 elements and the set $B = \{3, 4, 5\}$

Number of elements in set A, n(A) = 3Number of elements in set B, n(B) = 3Number of elements in $(A \times B) =$ (Number of elements in A)×(Number of elements in B)

$$n(A \times B) = n(A) \times n(B)$$
$$= 3 \times 3$$
$$= 9$$

Thus, the number of elements in $(A \times B)$ is 9.

Question:3

If $G = \{7, 8\}$ and $H = \{5, 4, 2\}$, find $G \times H$ and $H \times G$.

Solution:

It is given that $G = \{7, 8\}$ and $H = \{5, 4, 2\}$

We know that the Cartesian product $P \times Q$ of two non-empty sets P and Q is defined as $P \times Q = \{(p,q) : p \in P, q \in Q\}$

Therefore,

$$G \times H = \{(7,5), (7,4), (7,2), (8,5), (8,4), (8,2)\}$$
$$H \times G = \{(5,7), (5,8), (4,7), (4,8), (2,7), (2,8)\}$$

Question 4:

State whether each of the following statements are true or false. If the statement is false, rewrite the given statement correctly.

- (i) If $P = \{m, n\}$ and $Q = \{n, m\}$, then $P \times Q = \{(m, n), (n, m)\}$
- (ii) If A and B are non-empty sets, then $(A \times B)$ is a non-empty set of ordered pairs such that $x \in A$ and $y \in B$.
- (iii) If $A = \{1, 2\}, B = \{3, 4\}$, then $A \times (B \cap \phi) = \phi$

Solution:

- (i) False, $P \times Q = \{(m, n), (m, m), (n, n), (n, m)\}$
- (ii) True
- (iii) True

Question 5:

If $A = \{-1, 1\}$, find $A \times A \times A$.

Solution:

It is known that for any non-empty set A, $A \times A \times A$ is defined as $A \times A \times A = \{(a,b,c): a,b,c \in A\}$

It is given that $A = \{-1, 1\}$ Therefore, $A \times A \times A = \{(-1, -1, -1), (-1, -1, 1), (-1, 1, -1), (1, -1, -1), (1, -1, 1), (1, 1, -1), (1, 1, 1)\}$

Question 6: If $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$. Find A and B.

Solution:

It is given that $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$ We know that the Cartesian product of two non-empty sets P and Q is defined as $P \times Q = \{(p,q) : p \in P, q \in Q\}$

Therefore, A is the set of all first elements and B is the set of all second elements. Thus, $A = \{a, b\}$ and $B = \{x, y\}$

Question 7:

Let
$$A = \{1,2\}$$
, $B = \{1,2,3,4\}$, $C = \{5,6\}$ and $D = \{5,6,7,8\}$. Verify that
(i) $A \times (B \cap C) = (A \times B) \cap (A \times C)$.
(ii) $A \times C$ is a subset of $B \times D$.

Solution:

(i) To verify:
$$A \times (B \cap C) = (A \times B) \cap (A \otimes B) \cap (A \otimes B) \cap C = \{1, 2, 3, 4\} \cap \{5, 6\} = LHS = A \times (B \cap C)$$

= $A \times \phi$

 $=\phi$

Now,

$$A \times B = \{(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4)\}$$
$$A \times C = \{(1,5), (1,6), (2,5), (2,6)\}$$

 $\times C$)

Therefore,

$$RHS = (A \times B) \cap (A \times C)$$
$$= \phi$$

Therefore, L.H.S. = R.H.S Hence, $A \times (B \cap C) = (A \times B) \cap (A \times C)$

(ii) To verify: $A \times C$ is a subset of $B \times D$

We have

$$A \times C = \{(1,5), (1,6), (2,5), (2,6)\}$$
$$B \times D = \begin{cases} (1,5), (1,6), (1,7), (1,8), (2,5), (2,6), (2,7), (2,8), \\ (3,5), (3,6), (3,7), (3,8), (4,5), (4,6), (4,7), (4,8) \end{cases}$$

We can observe that all the elements of set $A \times C$ are the elements of set $B \times D$. Therefore, $A \times C$ is a subset of $B \times D$.

Question 8:

Let $A = \{1, 2\}$ and $B = \{3, 4\}$. Write $A \times B$. How many subsets will $A \times B$ have? List them.

Solution:

 $A = \{1,2\} \text{ and } B = \{3,4\}$ Therefore, $A \times B = \{(1,3), (1,4), (2,3), (2,4)\}$ Hence, $n(A \times B) = 4$

We know that if C is a set with n(C) = m, then $n[P(C)] = 2^m$. Therefore, the set $A \times B$ has $2^4 = 16$ subsets. These are

 $\begin{cases} \phi, \{(1,3)\}, \{(1,4)\}, \{(2,3)\}, \{(2,4)\}, \\ \{(1,3), (1,4)\}, \{(1,3), (2,3)\}, \{(1,3), (2,4)\}, \\ \{(1,4), (2,3)\}, \{(1,4), (2,4)\}, \{(2,3), (2,4)\}, \\ \{(1,3), (1,4), (2,3)\}, \{(1,3), (1,4), (2,4)\}, \\ \{(1,3), (2,3), (2,4)\}, \{(1,4), (2,3), (2,4)\}, \{(1,3), (1,4), (2,3), (2,4)\} \end{cases}$

Question 9:

Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x,1), (y,2), (z,1) are in $A \times B$, find A and B, where x, y and z are distinct elements.

Solution:

It is given that n(A) = 3 and n(B) = 2; and (x,1), (y,2), (z,1) are in $A \times B$.

We know that A = Set of first elements of the ordered pair elements of $A \times B$. B = Set of second elements of the ordered pair elements of $A \times B$.

Therefore, *x*, *y*, and *z* are the elements of A; 1 and 2 are the elements of B.

Since n(A) = 3 and n(B) = 2, It is clear that $A = \{x, y, z\}$ and $B = \{1, 2\}$.

Question 10:

The Cartesian product $A \times A$ has 9 elements among which are found (-1,0) and (0,1). Find the set A and the remaining elements of $A \times A$.

Solution:

We know that if n(A) = p and n(B) = q, then $n(A \times B) = pq$. Therefore, $n(A \times A) = n(A) \times n(A)$

It is given that $n(A \times A) = 9$

 $n(A) \times n(A) = 9$

Hence,

n(A) = 3

The ordered pairs (-1,0) and (0,1) are two of the nine elements of $A \times A$.

We know that $A \times A = \{(a, a) : a \in A\}$.

Therefore, -1, 0, and 1 are elements of A.

Since n(A) = 3, it is clear that $A = \{-1, 0, 1\}$.

The remaining elements of set $A \times A$ are (-1,-1), (-1,1), (0,-1), (0,0), (1,-1), (1,0), (1,1)

EXERCISE 2.2

Question 1:

Let $A = \{1, 2, 3, ..., 14\}$. Define a relation R from A to A by $R = \{(x, y), 3x - y = 0; x, y \in A\}$. Write down its domain, co-domain and range.

Solution:

The relation R from A to A is given as $R = \{(x, y), 3x - y = 0; x, y \in A\}$. Thus, $R = \{(x, y), 3x = y; x, y \in A\}$. Therefore, $R = \{(1,3), (2,6), (3,9), (4,12)\}$

The domain of R is the set of all first elements of the ordered pairs in the relation. Hence, Domain of $R = \{1, 2, 3, 4\}$

The whole set A is the co-domain of the relation R.

Therefore, Co-domain of $R = A = \{1, 2, 3, \dots, 14\}$

The range of R is the set of all second elements of the ordered pairs in the relation.

Therefore, Range of $R = \{3, 6, 9, 12\}$

Question 2:

Define a relation R on the set N of natural numbers by $R = \{(x, y): y = x + 5, x \text{ is a natural number less than } 4; x, y \in N\}$. Depict this relationship using roster form. Write down the domain and the range.

Solution:

 $R = \{(x, y): y = x + 5, x \text{ is a natural number less than } 4; x, y \in N\}$ The natural numbers less than 4 are 1, 2, and 3. Therefore, R= $\{(1,6), (2,7), (3,8)\}$

The domain of R is the set of all first elements of the ordered pairs in the relation. Hence, Domain of $R = \{1, 2, 3\}$.

The range of R is the set of all second elements of the ordered pairs in the relation.

Therefore, Range of $R = \{6, 7, 8\}$.

Question 3:

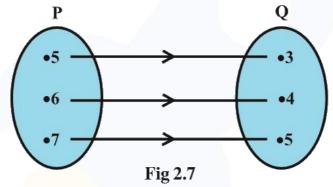
 $A = \{1, 2, 3, 5\}$ and $B = \{4, 6, 9\}$. Define a relation R from A to B by $R = \{(x, y) : \text{the difference between } x \text{ and } y \text{ is odd}; x \in A, y \in B\}$. Write R in roster form.

Solution:

 $A = \{1, 2, 3, 5\}, B = \{4, 6, 9\} \text{ and } R = \{(x, y): \text{ the difference between } x \text{ and } y \text{ is odd}; x \in A, y \in B\}$ Therefore, $R = \{(1, 4), (1, 6), (2, 9), (3, 4), (3, 6), (5, 4), (5, 6)\}$

Question 4:

The Fig2.7 shows a relationship between the sets P and Q. Write this relation (i) in set-builder form (ii) in roster form.



What is its domain and range?

Solution:

As per the Fig2.7, $P = \{5, 6, 7\}$ and $Q = \{3, 4, 5\}$

(i)
$$R = \{(x, y) : y = x - 2; x \in P\}$$
 or $R = \{(x, y) : y = x - 2, for \ x = 5, 6, 7\}$

(ii)
$$R = \{(5,3), (6,4), (7,5)\}$$

Domain of $R = \{5, 6, 7\}$ Range of $R = \{3, 4, 5\}$

Question 5:

Let $A = \{1, 2, 3, 4, 6\}$. Let R be the relation on A defined by $\{(a,b): a, b \in A, b \text{ is exactly divisible by } a\}$

- (i) Write R in roster form
- (ii) Find the domain of R
- (iii) Find the range of R.

Solution:

It is given that $A = \{1, 2, 3, 4, 6\}$ and $R = \{(a, b) : a, b \in A, b \text{ is exactly divisible by } a\}$

- (i) $R = \{(1,1), (1,2), (1,3), (1,4), (1,6), (2,2), (2,4), (2,6), (3,3), (3,6), (4,4), (6,6)\}$
- (ii) Domain of $R = \{1, 2, 3, 4, 6\}$
- (iii) Range of $R = \{1, 2, 3, 4, 6\}$

Question 6:

Determine the domain and range of the relation R defined by $R = \{(x, x+5) : x \in \{0, 1, 2, 3, 4, 5\}\}$.

Solution:

It is given that $R = \{(x, x+5) : x \in \{0, 1, 2, 3, 4, 5\}\}$ Therefore, $R = \{(0,5), (1,6), (2,7), (3,8), (4,9), (5,10)\}$

Hence,

Domain of $R = \{0, 1, 2, 3, 4, 5\}$ Range of $R = \{5, 6, 7, 8, 9, 10\}$

Question 7:

Write the relation $R = \{(x, x^3) : x \text{ is a prime number less than } 10\}$ in roster form.

Solution:

It is given that $R = \{(x, x^3) : x \text{ is a prime number less than } 10\}$ The prime numbers less than 10 are 2, 3, 5, and 7.

Therefore, $R = \{(2,8), (3,27), (5,125), (7,343)\}$

Question 8:

Let $A = \{x, y, z\}$ and $B = \{1, 2\}$. Find the number of relations from A to B.

Solution:

It is given that $A = \{x, y, z\}$ and $B = \{1, 2\}$.

Therefore, $A \times B = \{(x,1), (x,2), (y,1), (y,2), (z,1), (z,2)\}$ Since $n(A \times B) = 6$, the number of subsets of $(A \times B) = 2^6$.

Hence, the number of relations from A to B is 2^6 .

Question 9:

Let R be the relation on Z defined by $R = \{(a,b): a, b \in \mathbb{Z}, a-b \text{ is an integer}\}$. Find the domain and range of R.

Solution:

It is given that $R = \{(a,b) : a, b \in \mathbb{Z}, a-b \text{ is an integer}\}$ It is known that the difference between any two integers is always an integer.

Therefore,

Domain of $R = \mathbf{Z}$ Range of $R = \mathbf{Z}$

EXERCISE 2.3

Question 1:

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.

- (i) $\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$
- (ii) $\{(2,1), (4,2), (6,3), (8,4), (10,5), (12,6), (14,7)\}$
- (iii) $\{(1,3),(1,5),(2,5)\}$

Solution:

(i) $\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$

Since 2,5,8,11,14, and 17 are the elements of the domain of the given relation having their unique images, this relation is a function.

Here, domain = $\{2, 5, 8, 11, 14, 17\}$ and range = $\{1\}$

(ii) $\{(2,1), (4,2), (6,3), (8,4), (10,5), (12,6), (14,7)\}$

Since 2, 4, 6, 8, 10, 12 and 14 are the elements of the domain of the given relation having their unique images, this relation is a function.

Here, domain = $\{2, 4, 6, 8, 10, 12, 14\}$ and range = $\{1, 2, 3, 4, 5, 6, 7\}$

- (iii) $\{(1,3),(1,5),(2,5)\}$
 - Since the same first element i.e., 1 corresponds to two different images i.e., 3 and 5, this relation is not a function.

Question 2:

Find the domain and range of the following real function:

(i)
$$f(x) = -|x|$$
 (ii) $f(x) = \sqrt{9 - x^2}$

Solution:

(i)
$$f(x) = -|x|, x \in \mathbf{R}$$

We know that, $|x| = \begin{cases} x, \text{ if } x \ge 0 \\ -x, \text{ if } x < 0 \end{cases}$
Therefore, $f(x) = |-x| = \begin{cases} -x, \text{ if } x \ge 0 \\ x, \text{ if } x < 0 \end{cases}$

Since f(x) is defined for $x \in \mathbf{R}$, the domain of $f = \mathbf{R}$

It can be observed that the range of f(x) = -|x| is all real numbers except positive real numbers.

Therefore, the range of is $f = (-\infty, 0]$

(ii)
$$f(x) = \sqrt{9-x^2}$$

Since $\sqrt{9-x^2}$ is defined for all real numbers that are greater than or equal to -3 and less than or equal to 3, the domain of f(x) is $\{x: -3 \le x \le 3\}$ or [-3,3].

For any value of x such that $-3 \le x \le 3$, the value of f(x) will lie between 0 and 3.

Therefore, the range of f(x) is $\{x: 0 \le x \le 3\}$ or [0,3]

Question 3:

A function f is defined by f(x) = 2x-5. Write down the values of (i) f(0) (ii) f(7) (iii) f(-3)

Solution:

The given function is f(x) = 2x - 5. Therefore,

(i) $f(0) = 2 \times 0 - 5 = 0 - 5 = -5$

(ii)
$$f(7) = 2 \times 7 - 5 = 14 - 5 = 9$$

(iii)
$$f(-3) = 2 \times (-3) - 5 = -6 - 5 = -11$$

Question 4:

The function 't' which maps temperature in degree Celsius into temperature in degree

Fahrenheit is defined by $t(C) = \frac{9C}{5} + 32$. Find (i) t(0) (ii) t(28) (iii) t(-10) (iv) The value of C, when t(C) = 212.

Solution:

The given function is $t(C) = \frac{9C}{5} + 32$ Therefore,

(i)
$$t(0) = \frac{9 \times 0}{5} + 32 = 0 + 32 = 32$$

(ii)
$$t(28) = \frac{9 \times 28}{5} + 32 = \frac{252 + 160}{5} = \frac{412}{5} = 82.4$$

(iii)
$$t(-10) = \frac{9 \times (-10)}{5} + 32 = 9 \times (-2) + 32 = -18 + 32 = 14$$

(iv) It is given that

$$t(C) = 212$$

$$\Rightarrow \frac{9C}{5} + 32 = 212$$

$$\Rightarrow \frac{9C}{5} = 212 - 32$$

$$\Rightarrow C = \frac{180 \times 5}{9} = 100$$

Thus, the value of 't', when t(C) = 212 is 100.

Question 5:

Find the range of each of the following functions.

(i) $f(x) = 2 - 3x, x \in R, x > 0.$

- (ii) $f(x) = x^2 + 2, x$ is a real number.
- (iii) f(x) = x, x is a real number.

Solution:

(i) $f(x) = 2 - 3x, x \in \mathbf{R}, x > 0.$

The values of f(x) for various values of real numbers x > 0 can be written in the tabular form as

f(x)	1.97	1.7	-0.7	-1	-4	-5.5	-10	-13	

Thus, it can be clearly observed that the range of f is the set of all real numbers less than 2. i.e., range of $f = (-\infty, 2)$

Alternative Method:

Let x > 0

 $\Rightarrow 3x > 0$ $\Rightarrow 2 - 3x < 2$ $\Rightarrow f(x) < 2$

Therefore, Range of $f = (-\infty, 2)$

(ii) $f(x) = x^2 + 2, x$ is a real number.

The values of f(x) for various values of real numbers x can be written in the tabular form as

x							
f(x)	2	2.09	2.64	3	6	11	

Thus, it can be clearly observed that the range of f is the set of all real numbers greater than 2. i.e., range of $f = [2, \infty)$

Alternative Method:

Let x be any real number i.e., $x^2 \ge 0$. Accordingly,

$$x^{2} \ge 0$$

$$\Rightarrow x^{2} + 2 \ge 0 + 2$$

$$\Rightarrow x^{2} + 2 \ge 2$$

$$\Rightarrow f(x) \ge 2$$

Therefore, Range of $f = [2,\infty)$

(iii) f(x) = x, x is a real number It is clear that, the range of f is the set of all real numbers. Therefore, Range of $f = \mathbf{R}$.

MISCELLANEOUS EXERCISE

Question 1:

The relation f is defined by
$$f(x) = \begin{cases} x^2, 0 \le x \le 3\\ 3x, 3 \le x \le 10 \end{cases}$$

The relation g is defined by
$$g(x) = \begin{cases} x^2, 0 \le x \le 2\\ 3x, 2 \le x \le 10 \end{cases}$$

Show that f is a function and g is not a function.

Solution:

The relation f is defined as $f(x) = \begin{cases} x^2, 0 \le x \le 3\\ 3x, 3 \le x \le 10 \end{cases}$

It can be observed that for

$$0 \le x < 3, f(x) = x^2$$
 and
 $3 < x \le 10, f(x) = 3x$

Also, at x = 3

and

$$f(x) = 3 \times 3$$
$$= 9$$

 $f(x) = 3^2$

i.e., at x = 3, f(x) = 9

Therefore, for $0 \le x \le 10$, the images of f(x) are unique. Thus, the given relation is a function.

The relation g is defined as
$$g(x) = \begin{cases} x^2, 0 \le x \le 2\\ 3x, 2 \le x \le 10 \end{cases}$$

It can be observed that for

$$0 \le x \le 2, g(x) = x^2$$
 and
 $2 \le x \le 10, g(x) = 3x$

Also, at x = 2

$$g(x) = 2^{2}$$
$$= 4$$
$$g(x) = 3 \times 2$$

and

$$g(x) = 3 \times 2$$
$$= 6$$

Hence, element 2 of the domain of the relation g corresponds to two different images i.e., 4 and 6.

Hence, this relation is not a function.

Thus, f is a function and g is not a function.

Question 2:

If
$$f(x) = x^2$$
, find $\frac{f(1.1) - f(1)}{(1.1-1)}$.

Solution:

It is given that $f(x) = x^2$ Therefore,

$$\frac{f(1.1) - f(1)}{(1.1 - 1)} = \frac{(1.1)^2 - (1)^2}{(1.1 - 1)}$$
$$= \frac{1.21 - 1}{0.1}$$
$$= \frac{0.21}{0.1}$$
$$= 2.1$$

Question 3:

Find the domain of the function $f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}$

Solution:

The given function is $f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}$.

$$f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}$$
$$= \frac{x^2 + 2x + 1}{(x - 6)(x - 2)}$$

It can be seen that, the function f is defined for all real numbers except at x = 6 and x = 2.

Hence, the domain of the function f is set of real numbers except 6 and 2. i.e., $\mathbf{R} - \{2, 6\}$.

Question 4:

Find the domain and the range of the real function f defined by $f(x) = \sqrt{(x-1)}$.

Solution:

The given real function is $f(x) = \sqrt{(x-1)}$. It can be seen that $\sqrt{(x-1)}$ is defined for $x \ge 1$.

Therefore, the domain of f is the set of all real numbers greater than or equal to 1 i.e., the domain of $f = [1, \infty)$.

As

$$\Rightarrow x \ge 1$$

$$\Rightarrow (x-1) \ge 0$$

$$\Rightarrow \sqrt{(x-1)} \ge 0$$

Therefore, the range of f is the set of all real numbers greater than or equal to 0 i.e., the range of $f = [0, \infty)$.

Question 5:

Find the domain and the range of the real function f defined by f(x) = |x-1|.

Solution:

The given real function is f(x) = |x-1|

It is clear that |x-1| is defined for all real numbers.

Therefore, Domain of $f = \mathbf{R}$

Also, for $x \in \mathbf{R}, |x-1|$ assumes all real numbers.

Hence, the range of f is the set of all non-negative real numbers.

Question 6:

 $f = \left\{ \left(x, \frac{x^2}{1+x^2} \right) : x \in R \right\}$ be a function from **R** into **R**. Determine the range of f.

Solution:

$$f = \left\{ \left(x, \frac{x^2}{1+x^2} \right) : x \in R \right\}$$

It is given that
$$f = \left\{ \left(0, 0, \left(\pm 0.5, \frac{1}{5} \right), \left(\pm 1, \frac{1}{2} \right), \left(\pm 1.5, \frac{9}{13} \right), \left(\pm 2, \frac{4}{5} \right), \left(\pm 3, \frac{9}{10} \right), \left(\pm 4, \frac{16}{17} \right), \dots \right\}$$

Therefore,

The range of f is the set of all second elements. It can be observed that all these elements are greater than or equal to 0 but less than 1 (denominator is greater than numerator).

Thus, range of f = [0, 1)

Question 7:

Let $f, g: \mathbf{R} \to \mathbf{R}$ be defined, respectively by f(x) = x + 1, g(x) = 2x - 3. Find f + g, f - g and $\frac{f}{g}$.

Solution:

Since $f, g: \mathbf{R} \to \mathbf{R}$ is defined as f(x) = x+1, g(x) = 2x-3Hence,

$$(f+g)(x) = f(x) + g(x)$$

= $(x+1) + (2x-3)$
= $3x-2$

Therefore, (f+g)(x) = 3x-2

Now,

$$(f-g)(x) = f(x) - g(x)$$

= (x+1) - (2x-3)
= x+1-2x+3
= -x+4

Therefore, (f-g)(x) = -x+4

Now,

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, g(x) \neq 0, x \in \mathbb{R}$$
$$= \frac{x+1}{2x-3}, 2x-3, x \neq \frac{3}{2}$$

Therefore, $\left(\frac{f}{g}\right)(x) = \frac{x+1}{2x-3}, x \neq \frac{3}{2}$

Question 8:

Let $f = \{(1,1), (2,3), (0,-1), (-1,-3)\}$ be a function from **Z** to **Z** defined by f(x) = ax + b, for some integers *a*, *b*. Determine *a*, *b*.

Solution:

It is given that $f = \{(1,1), (2,3), (0,-1), (-1,-3)\}$ and f(x) = ax + b

 $(1, 1) \in \mathbf{f} \Rightarrow f(1) = 1 \Rightarrow \mathbf{a} \times 1 + \mathbf{b} = 1$ $\Rightarrow \mathbf{a} + \mathbf{b} = 1$ $(0, -1) \in f \Rightarrow f(0) = -1 \Rightarrow \mathbf{a} \times 0 + \mathbf{b} = -1$ $\Rightarrow \mathbf{b} = -1$

On substituting b = -1 in a + b = 1, we obtain a + (-1) = 1

$$a = 1 + 1$$

= 2

Thus, the respective values of a and b are 2 and -1.

Question 9:

Let R be a relation from N to N defined by $R = \{(a,b) : a, b \in \mathbb{N} \text{ and } a = b^2\}$. Are the following true?

(i) $(a,a) \in R$, for all $a \in \mathbb{N}$

(ii)
$$(a, b) \in R$$
, implies $(b, a) \in R$

(iii) $(a,b) \in R, (b,c) \in R$ implies $(a,c) \in R$

Justify your answer in each case.

Solution:

It is given that $R = \{(a,b) : a, b \in \mathbb{N} \text{ and } a = b^2\}$

- (i) It can be seen that 2 ∈ N; however, 2 ≠ 2² = 4
 Therefore, the statement "(a,a) ∈ R, for all a ∈ N" is not true.
- (ii) It can be seen that (9,3) ∈ N because 9,3 ∈ N and 9 = 3².
 Now, 3 ≠ 9² = 81; therefore, (3,9) ∉ N
 Therefore, the statement "(a, b) ∈ R, implies (b,a) ∈ R" is not true.
- (iii) It can be seen that $(9,3) \in R, (16, 4) \in R$ because $9,3,16,4 \in \mathbb{N}$ and $9 = 3^2, 16 = 4^2$ Now, $9 \neq 4^2 = 16$; therefore, $(9,4) \notin \mathbb{N}$. Therefore, the statement " $(a,b) \in R, (b,c) \in R$ implies $(a,c) \in R$ " is not true.

Question 10:

Let $A = \{1, 2, 3, 4\}, B = \{1, 5, 9, 11, 15, 16\}$ and $f = \{(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)\}$. Are the following are true?

(i) f is a relation from A to B (ii) f is a function from A to B. Justify your answer in each case.

Solution:

It is given that $A = \{1, 2, 3, 4\}, B = \{1, 5, 9, 11, 15, 16\}$ and $f = \{(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)\}$. Therefore,

$$A \times B = \begin{cases} (1,1), (1,5), (1,9), (1,11), (1,15), (1,16), (2,1), (2,5), (2,9), \\ (2,11), (2,15), (2,16), (3,1), (3,5), (3,9), (3,11), (3,15), \\ (3,16), (4,1), (4,5), (4,9), (4,11), (4,15), (4,16) \end{cases}$$

(i) A relation from a non-empty set A to a non-empty set B is a subset of the Cartesian product $A \times B$.

It is observed that f is a subset of $A \times B$. Thus, f is a relation from A to B.

(ii) Since the same first element i.e., 2 corresponds to two different images i.e., 9 and 11. Thus, f is not a function from A to B.

Question 11:

Let f be the subset of $\mathbb{Z} \times \mathbb{Z}$ defined by $f = \{(ab, a+b): a, b \in \mathbb{Z}\}$. Is f a function from \mathbb{Z} to \mathbb{Z} ? Justify your answer.

Solution:

The relation f is defined as $f = \{(ab, a+b): a, b \in \mathbb{Z}\}.$

We know that a relation f from a set A to a set B is said to be a function if every element of set A has unique images in set B.

Since, $2, 6, -2, -6 \in \mathbb{Z}, (2 \times 6, 2 + 6), (-2 \times -6, -2 + (-6)) \in f$ i.e., $(12,8), (12, -8) \in f$

It can be seen that the same first element i.e., 12 corresponds to two different images i.e., 8 and -8.

Thus, relation f is not a function.

Question 12:

Let $A = \{9, 10, 11, 12, 13\}$ and let $f : A \to \mathbb{N}$ be defined by f(n) = the highest prime factor of n. . Find the range of f.

Solution:

It is given that $A = \{9,10,11,12,13\}$ and $f: A \rightarrow N$ is defined by f(n) = the highest prime factor of nHence, Prime factor of 9 = 3Prime factor of 10 = 2,5Prime factor of 11 = 11Prime factor of 12 = 2,3

Prime factor of 13 = 13

Therefore,

f(9) = the highest prime factor of 9 = 3 f(10) = the highest prime factor of 10 = 5 f(11) = the highest prime factor of 11 = 11

f(12) = the highest prime factor of 12 = 3

f(13) = the highest prime factor of 13 = 13

The range of f is the set of all f(n), where $n \in A$.

Therefore, Range of $f = \{3, 5, 11, 13\}$

When you learn math in an interesting way, you never forget.

25 Million

Math classes & counting

100K+

Students learning Math the right way

20+ Countries

Present across USA, UK, Singapore, India, UAE & more.

Why choose Cuemath?

"Cuemath is a valuable addition to our family. We love solving puzzle cards. My daughter is now visualizing maths and solving problems effectively!" "Cuemath is great because my son has a one-on-one interaction with the teacher. The instructor has developed his confidence and I can see progress in his work. One-on-one interaction is perfect and a great bonus." "I appreciate the effort that miss Nitya puts in to help my daughter understand the best methods and to explain why she got a problem incorrect. She is extremely patient and generous with Miranda."

- Gary Schwartz

- Kirk Riley

- Barbara Cabrera

Get the Cuemath advantage

Book a FREE trial class