

Get better at Math.
Get better at
everything.

Come experience the Cuemath methodology and ensure your child stays ahead at math this summer.

Adaptive Platform

Interactive Visual Simulations

Personalized Attention

For Grades 1 - 10

LIVE online classes by trained and certified experts.

Get the Cuemath advantage

Book a FREE trial class

NCERT Solutions Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations

Question 1:

Express the given complex number in the form a+ib: $(5i)\left(-\frac{3}{5}i\right)$

Solution:

$$(5i)\left(-\frac{3}{5}i\right) = -5i \times \frac{3}{5} \times i$$

$$= -3i^{2} \qquad \left[\because i^{2} = -1\right]$$

$$= -3(-1)$$

$$= 3$$

$$= 3 + i0$$

Question 2:

Express the given complex number in the form a+ib: i^9+i^{19}

Solution:

$$i^{9} + i^{19} = i^{4 \times 2 + 1} + i^{4 \times 4 + 3}$$

$$= (i^{4})^{2} \times i + (i^{4})^{4} \times i^{3}$$

$$= 1 \times i + 1 \times (-i) \qquad \left[\because i^{4} = 1, i^{3} = -i\right]$$

$$= i + (-i)$$

$$= 0$$

$$= 0 + i0$$

Question 3:

Express the given complex number in the form a+ib: i^{-39}

Solution:

$$i^{-39} = i^{4 \times (-9) - 3}$$

$$= (i^4)^{-9} \times i^{-3}$$

$$= (1)^{-9} \times i^{-3} \qquad \left[\because i^4 = 1\right]$$

$$= \frac{1}{i^3}$$

$$= \frac{1}{-i} \qquad \left[\because i^3 = -i\right]$$

$$= -\frac{1}{i} \times \frac{i}{i}$$

$$= -\frac{i}{i^2}$$

$$= \frac{-i}{-1} \qquad \left[\because i^2 = -1\right]$$

$$= i$$

$$= 0 + i1$$

Question 4:

Express the given complex number in the form a+ib: 3(7+i7)+i(7+i7)

Solution:

$$3(7+i7)+i(7+i7) = 21+21i+7i+7i^{2}$$

$$= 21+28i+7\times(-1)$$

$$= 14+i28$$

$$[\because i^{2} = -1]$$

Question 5:

Express the given complex number in the form a+ib: (1-i)-(-1+i6)

$$(1-i)-(-1+i6) = 1-i+1-6i$$

= 2-i7

Question 6:

Express the given complex number in the form a+ib: $\left(\frac{1}{5}+i\frac{2}{5}\right)-\left(4+i\frac{5}{2}\right)$

Solution:

$$\left(\frac{1}{5} + i\frac{2}{5}\right) - \left(4 + i\frac{5}{2}\right) = \frac{1}{5} + \frac{2}{5}i - 4 - \frac{5}{2}i$$

$$= \left(\frac{1}{5} - 4\right) + i\left(\frac{2}{5} - \frac{5}{2}\right)$$

$$= \left(-\frac{19}{5}\right) + i\left(-\frac{21}{10}\right)$$

$$= -\frac{19}{5} - i\frac{21}{10}$$

Question 7:

Express the given complex number in the form a+ib: $\left[\left(\frac{1}{3}+i\frac{7}{3}\right)+\left(4+i\frac{1}{3}\right)\right]-\left(-\frac{4}{3}+i\right)$ Solution:

$$\left[\left(\frac{1}{3} + i\frac{7}{3} \right) + \left(4 + i\frac{1}{3} \right) \right] - \left(-\frac{4}{3} + i \right) = \frac{1}{3} + \frac{7}{3}i + 4 + \frac{1}{3}i + \frac{4}{3} - i$$

$$= \left(\frac{1}{3} + 4 + \frac{4}{3} \right) + i \left(\frac{7}{3} + \frac{1}{3} - 1 \right)$$

$$= \frac{17}{3} + i\frac{5}{3}$$

Question 8:

Express the given complex number in the form a+ib: $(1-i)^4$

$$(1-i)^4 = \left[(1-i)^2 \right]^2$$

$$= \left[1^2 + i^2 - 2i \right]^2$$

$$= \left[1 - 1 - 2i \right]^2$$

$$= \left[2i \right]^2$$

$$= 4i^2 \qquad (\because i^2 = -1)$$

$$= -4$$

Question 9:

Express the given complex number in the form a+ib: $\left(\frac{1}{3}+3i\right)^3$ Solution:

$$\left(\frac{1}{3} + 3i\right)^{3} = \left(\frac{1}{3}\right)^{3} + \left(3i\right)^{3} + 3\left(\frac{1}{3}\right)\left(3i\right)\left(\frac{1}{3} + 3i\right)$$

$$= \frac{1}{27} + 27i^{3} + 3i\left(\frac{1}{3} + 3i\right)$$

$$= \frac{1}{27} + 27(-i) + i + 9i^{2} \qquad (\because i^{3} = -i)$$

$$= \frac{1}{27} - 27i + i - 9 \qquad (\because i^{2} = -1)$$

$$= \left(\frac{1}{27} - 9\right) - 26i$$

$$= -\frac{242}{27} - i26$$

Question 10:

Express the given complex number in the form a+ib: $\left(-2-\frac{1}{3}i\right)^3$

$$\left(-2 - \frac{1}{3}i\right)^{3} = \left(-1\right)^{3} \left(2 + \frac{1}{3}i\right)^{3}$$

$$= -\left[2^{3} + \left(\frac{i}{3}\right)^{3} + 3\left(2\right)\left(\frac{i}{3}\right)\left(2 + \frac{i}{3}\right)\right]$$

$$= -\left[8 + \frac{i^{3}}{27} + 2i\left(2 + \frac{i}{3}\right)\right]$$

$$= -\left[8 - \frac{i}{27} + 4i + \frac{2}{3}i^{2}\right] \qquad \left[\because i^{3} = -i\right]$$

$$= -\left[8 - \frac{i}{27} + 4i - \frac{2}{3}\right] \qquad \left[\because i^{2} = -1\right]$$

$$= -\left[\frac{22}{3} + \frac{107i}{27}\right]$$

$$= -\frac{22}{3} - i\frac{107}{27}$$

Question 11:

Find the multiplicative inverse of the complex number 4-3i

Solution:

Let
$$z = 4 - 3i$$

Then, $\overline{z} = 4 + 3i$ and

$$|z|^2 = 4^2 + (-3)^2$$

= 16 + 9
= 25

Therefore, the multiplicative inverse of 4-3i is given by

$$z^{-1} = \frac{\overline{z}}{|z|^2}$$
$$= \frac{4+3i}{25}$$
$$= \frac{4}{25} + i\frac{3}{25}$$

Question 12:

Find the multiplicative inverse of the complex number $\sqrt{5} + 3i$

Let
$$z = \sqrt{5} + 3i$$

Then,
$$\overline{z} = \sqrt{5} - 3i$$
 and

$$\left|z\right|^2 = \left(\sqrt{5}\right)^2 + 3^2$$
$$= 5 + 9$$

Therefore, the multiplicative inverse of $\sqrt{5} + 3i$ is given by

$$z^{-1} = \frac{\overline{z}}{|z|^2}$$
$$= \frac{\sqrt{5} - 3i}{14}$$
$$= \frac{\sqrt{5}}{14} - \frac{3}{14}i$$

Question 13:

Find the multiplicative inverse of the complex number -i

Solution:

Let
$$z = -i$$

Then,
$$\overline{z} = i$$
 and

$$\left|z\right|^2 = 1^2$$

$$=1$$

Therefore, the multiplicative inverse of -i is given by

$$z^{-1} = \frac{\overline{z}}{|z|^2}$$
$$= \frac{i}{1}$$
$$= i$$

Question 14:

Express the following expression in the form a + ib:

$$\frac{\left(3+i\sqrt{5}\right)\!\left(3-i\sqrt{5}\right)}{\left(\sqrt{3}+\sqrt{2}i\right)\!-\!\left(\sqrt{3}-\sqrt{2}i\right)}$$

Solution:

$$\frac{(3+i\sqrt{5})(3-i\sqrt{5})}{(\sqrt{3}+\sqrt{2}i)-(\sqrt{3}-\sqrt{2}i)} = \frac{(3)^2 - (i\sqrt{5})^2}{\sqrt{3}+\sqrt{2}i-\sqrt{3}+\sqrt{2}i}$$

$$= \frac{9-5i^2}{2\sqrt{2}i}$$

$$= \frac{9-5(-1)}{2\sqrt{2}i}$$

$$= \frac{9+5}{2\sqrt{2}i}$$

$$= \frac{14}{2\sqrt{2}i} \times \frac{i}{i}$$

$$= \frac{7i}{\sqrt{2}i^2}$$

$$= \frac{7i}{\sqrt{2}(-1)}$$

$$= \frac{-7i}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$$

$$= \frac{-7\sqrt{2}i}{2}$$

$$= 0+i\frac{-7\sqrt{2}}{2}$$

$$\left[\because (a+b)(a-b) = a^2 - b^2 \right]$$

$$\left[\because i^2 = -1\right]$$

$$\left[\because i^2 = -1\right]$$

EXERCISE 5.2

Question 1:

Find the modulus and argument of the complex number $z = -1 - i\sqrt{3}$

Solution:

$$z = -1 - i\sqrt{3}$$

Let
$$r\cos\theta = -1$$
 and $r\sin\theta = -\sqrt{3}$

On squaring and adding, we obtain

$$(r\cos\theta)^2 + (r\sin\theta)^2 = (-1)^2 + (-\sqrt{3})^2$$

$$\Rightarrow r^2 (\cos^2 \theta + \sin^2 \theta) = 1 + 3$$

$$\left[\because \cos^2\theta + \sin^2\theta = 1\right]$$

$$\Rightarrow r^2 = 4$$

$$\Rightarrow r = \sqrt{4} = 2$$

Therefore, Modulus = 2

Hence, $2\cos\theta = -1$ and $2\sin\theta = -\sqrt{3}$

$$\Rightarrow \cos \theta = -\frac{1}{2}$$
 and $\sin \theta = -\frac{\sqrt{3}}{2}$

Since both the values of $\sin \theta$ and $\cos \theta$ are negative in III quadrant,

Argument =
$$-\left(\pi - \frac{\pi}{3}\right) = \frac{-2\pi}{3}$$

Thus, the modulus and argument of the complex number $-1-i\sqrt{3}$ are 2 and $\frac{-2\pi}{3}$ respectively.

Question 2:

Find the modulus and argument of the complex number $z = -\sqrt{3} + i$

Solution:

$$z = -\sqrt{3} + i$$

Let
$$r\cos\theta = -\sqrt{3}$$
 and $r\sin\theta = 1$

On squaring and adding, we obtain

$$r^2 \cos^2 \theta + r^2 \sin^2 \theta = \left(-\sqrt{3}\right)^2 + 1^2$$

$$\Rightarrow r^2 = 3 + 1 = 4$$

$$\left[\because \cos^2\theta + \sin^2\theta = 1\right]$$

$$\Rightarrow r = \sqrt{4} = 2$$

[: Conventionally,
$$r > 0$$
]

Therefore, Modulus = 2

Hence,
$$2\cos\theta = -\sqrt{3}$$
 and $2\sin\theta = 1$

$$\Rightarrow \cos \theta = -\frac{\sqrt{3}}{2}$$
 and $\sin \theta = \frac{1}{2}$

Since,
$$\theta$$
 lies in the quadrant II, $\theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$

Thus, the modulus and argument of the complex number $-\sqrt{3} + i$ are 2 and $\frac{5\pi}{6}$ respectively.

Question 3:

Convert the given complex number in polar form: 1-i

Solution:

$$z = 1 - i$$

Let
$$r\cos\theta = 1$$
 and $r\sin\theta = -1$

On squaring and adding, we obtain

$$r^2 \cos^2 \theta + r^2 \sin^2 \theta = 1^2 + (-1)^2$$

$$\Rightarrow r^2(\cos^2\theta + \sin^2\theta) = 1 + 1$$

$$\Rightarrow r^2 = 2$$

$$\Rightarrow r = \sqrt{2}$$

$$[\because Conventionally, r > 0]$$

Therefore,

$$\sqrt{2}\cos\theta = 1$$
 and $\sqrt{2}\sin\theta = -1$

$$\Rightarrow \cos \theta = \frac{1}{\sqrt{2}} \text{ and } \sin \theta = -\frac{1}{\sqrt{2}}$$

Since, θ lies in the quadrant IV, $\theta = -\frac{\pi}{4}$ Hence,

$$1 - i = r \cos \theta + ir \sin \theta$$

$$= \sqrt{2} \cos \left(-\frac{\pi}{4}\right) + i\sqrt{2} \sin \left(-\frac{\pi}{4}\right)$$

$$= \sqrt{2} \left[\cos \left(-\frac{\pi}{4}\right) + i \sin \left(-\frac{\pi}{4}\right)\right]$$

Thus, this is the required polar form.

Question 4:

Convert the given complex number in polar form: -1+i

Solution:

$$z = -1 + i$$

Let $r \cos \theta = -1$ and $r \sin \theta = 1$

On squaring and adding, we obtain

$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = (-1)^{2} + 1^{2}$$

$$\Rightarrow r^{2} (\cos^{2} \theta + \sin^{2} \theta) = 1 + 1$$

$$\Rightarrow r^{2} = 2$$

$$\Rightarrow r = \sqrt{2}$$
[: Conventionally, $r > 0$]

Therefore,

$$\sqrt{2}\cos\theta = -1 \text{ and } \sqrt{2}\sin\theta = 1$$

 $\Rightarrow \cos\theta = -\frac{1}{\sqrt{2}} \text{ and } \sin\theta = \frac{1}{\sqrt{2}}$

Since, θ lies in the quadrant II, $\theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$ Hence,

$$-1+i = r\cos\theta + ir\sin\theta$$
$$= \sqrt{2}\cos\frac{3\pi}{4} + i\sqrt{2}\sin\frac{3\pi}{4}$$
$$= \sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$$

Thus, this is the required polar form.

Question 5:

Convert the given complex number in polar form: -1-i

$$z = -1 - i$$

Let
$$r\cos\theta = -1$$
 and $r\sin\theta = -1$

On squaring and adding, we obtain

$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = (-1)^{2} + (-1)^{2}$$

$$\Rightarrow r^{2} (\cos^{2} \theta + \sin^{2} \theta) = 1 + 1$$

$$\Rightarrow r^{2} = 2$$

$$\Rightarrow r = \sqrt{2}$$

 $[\because Conventionally, r > 0]$

Therefore,

$$\sqrt{2}\cos\theta = -1 \text{ and } \sqrt{2}\sin\theta = -1$$

 $\Rightarrow \cos\theta = -\frac{1}{\sqrt{2}} \text{ and } \sin\theta = -\frac{1}{\sqrt{2}}$

Since, θ lies in the quadrant III, $\theta = -\left(\pi - \frac{\pi}{4}\right) = -\frac{3\pi}{4}$ Hence,

$$-1 - i = r\cos\theta + ir\sin\theta$$
$$= \sqrt{2}\cos\frac{-3\pi}{4} + i\sqrt{2}\sin\frac{-3\pi}{4}$$
$$= \sqrt{2}\left(\cos\frac{-3\pi}{4} + i\sin\frac{-3\pi}{4}\right)$$

Thus, this is the required polar form.

Question 6:

Convert the given complex number in polar form: -3

Solution:

$$z = -3$$

Let
$$r\cos\theta = -3$$
 and $r\sin\theta = 0$

On squaring and adding, we obtain

$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = (-3)^{2} + (0)^{2}$$

$$\Rightarrow r^{2} (\cos^{2} \theta + \sin^{2} \theta) = 9$$

$$\Rightarrow r^{2} = 9$$

$$\Rightarrow r = 3$$
[:: Conventionally, $r > 0$]

Therefore,

$$3\cos\theta = -3$$
 and $3\sin\theta = 0$
 $\Rightarrow \cos\theta = -1$ and $\sin\theta = 0$

Since the θ lies in the quadrant II, $\theta = \pi$

Hence,

$$-3 = r \cos \theta + ir \sin \theta$$
$$= 3 \cos \pi + i3 \sin \pi$$
$$= 3(\cos \pi + i \sin \pi)$$

Thus, this is the required polar form.

Question 7:

Convert the given complex number in polar form: $\sqrt{3} + i$

Solution:

$$z = \sqrt{3} + i$$

Let $r\cos\theta = \sqrt{3}$ and $r\sin\theta = 1$

On squaring and adding, we obtain

$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = \left(\sqrt{3}\right)^{2} + 1^{2}$$

$$\Rightarrow r^{2} \left(\cos^{2} \theta + \sin^{2} \theta\right) = 3 + 1$$

$$\Rightarrow r^{2} = 4$$

$$\Rightarrow r = \sqrt{4} = 2$$

[Conventionally, r > 0]

Therefore,

$$2\cos\theta = \sqrt{3} \text{ and } 2\sin\theta = 1$$

 $\Rightarrow \cos\theta = \frac{\sqrt{3}}{2} \text{ and } \sin\theta = \frac{1}{2}$

Since, θ lies in quadrant I, $\theta = \frac{\pi}{6}$

Hence,

$$\sqrt{3} + i = r\cos\theta + ir\sin\theta$$
$$= 2\cos\frac{\pi}{6} + i2\sin\frac{\pi}{6}$$
$$= 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

Thus, this is the required polar form.

Question 8:

Convert the given complex number in polar form: i

Solution:

$$z = i$$

Let
$$r\cos\theta = 0$$
 and $r\sin\theta = 1$

On squaring and adding, we obtain

$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = 0^{2} + 1^{2}$$

$$\Rightarrow r^{2} (\cos^{2} \theta + \sin^{2} \theta) = 1$$

$$\Rightarrow r^{2} = 1$$

$$\Rightarrow r = \sqrt{1} = 1$$

[Conventionally, r > 0]

Therefore,

$$\cos \theta = 0$$
 and $\sin \theta = 1$

Since, θ lies in quadrant I, $\theta = \frac{\pi}{2}$ Hence,

$$i = r\cos\theta + ir\sin\theta$$
$$= \cos\frac{\pi}{2} + i\sin\frac{\pi}{2}$$

Thus, this is the required polar form.

EXERCISE 5.3

Question 1:

Solve the equation $x^2 + 3 = 0$

Solution:

The given quadratic equation is $x^2 + 3 = 0$

On comparing the given equation with $ax^2 + bx + c = 0$,

We obtain a = 1, b = 0, and c = 3

Therefore, the discriminant of the given equation is

$$D = b^2 - 4ac$$
$$= 0^2 - 4 \times 1 \times 3$$
$$= -12$$

Therefore, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-0 \pm \sqrt{-12}}{2 \times 1}$$

$$= \frac{\pm \sqrt{12}i}{2} \qquad \left[\because \sqrt{-1} = i\right]$$

$$= \frac{\pm 2\sqrt{3}i}{2}$$

$$= \pm \sqrt{3}i$$

Question 2:

Solve the equation $2x^2 + x + 1 = 0$

Solution:

The given quadratic equation is $2x^2 + x + 1 = 0$ On comparing the given equation with $ax^2 + bx + c = 0$, We obtain a = 2, b = 1, and c = 1

Therefore, the discriminant of the given equation is

$$D = b^2 - 4ac$$
$$= 1^2 - 4 \times 2 \times 1$$
$$= -7$$

Therefore, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-1 \pm \sqrt{-7}}{2 \times 2}$$
$$= \frac{-1 \pm \sqrt{7}i}{4} \qquad \left[\because \sqrt{-1} = i\right]$$

Question 3:

Solve the equation $x^2 + 3x + 9 = 0$

Solution:

The given quadratic equation is $x^2 + 3x + 9 = 0$ On comparing the given equation with $ax^2 + bx + c = 0$, We obtain a = 1, b = 3, and c = 9

Therefore, the discriminant of the given equation is

$$D = b^2 - 4ac$$
$$= 3^2 - 4 \times 1 \times 9$$
$$= -27$$

Hence, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-3 \pm \sqrt{-27}}{2 \times 1}$$

$$= \frac{-3 \pm 3\sqrt{-3}}{2}$$

$$= \frac{-3 \pm 3\sqrt{3}i}{2} \qquad \left[\because \sqrt{-1} = i\right]$$

Question4:

Solve the equation $-x^2 + x - 2 = 0$

Solution:

The given quadratic equation is $-x^2 + x - 2 = 0$ On comparing the given equation with $ax^2 + bx + c = 0$, We obtain a = -1, b = 1 and c = -2

Therefore, the discriminant of the given equation is

$$D = b^{2} - 4ac$$

$$= 1^{2} - 4 \times (-1) \times (-2)$$

$$= -7$$

Hence, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-1 \pm \sqrt{-7}}{2 \times (-1)}$$
$$= \frac{-1 \pm \sqrt{7}i}{2} \qquad \left[\sqrt{-1} = i\right]$$

Question 5:

Solve the equation $x^2 + 3x + 5 = 0$

Solution:

The given quadratic equation is $x^2 + 3x + 5 = 0$ On comparing the given equation with $ax^2 + bx + c = 0$, We obtain a = 1, b = 3, and c = 5

Therefore, the discriminant of the given equation is

$$D = b^2 - 4ac$$
$$= 3^2 - 4 \times 1 \times 5$$
$$= -11$$

Hence, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-3 \pm \sqrt{-11}}{2 \times 1}$$
$$= \frac{-3 \pm \sqrt{11}i}{2} \qquad \left[\sqrt{-1} = i\right]$$

Question 6:

Solve the equation $x^2 - x + 2 = 0$

Solution:

The given quadratic equation is $x^2 - x + 2 = 0$ On comparing the given equation with $ax^2 + bx + c = 0$, We obtain a = 1, b = -1, and c = 2

Therefore, the discriminant of the given equation is

$$D = b^2 - 4ac$$
$$= (-1)^2 - 4 \times 1 \times 2$$
$$= -7$$

Hence, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-(-1) \pm \sqrt{-7}}{2 \times 1}$$
$$= \frac{1 \pm \sqrt{7}i}{2} \qquad \left[\because \sqrt{-1} = i\right]$$

Question 7:

Solve the equation $\sqrt{2}x^2 - x + \sqrt{2} = 0$

Solution:

The given quadratic equation is $\sqrt{2}x^2 - x + \sqrt{2} = 0$ On comparing the given equation with $ax^2 + bx + c = 0$, We obtain $a = \sqrt{2}$, b = -1, and $c = \sqrt{2}$

Therefore, the discriminant of the given equation is

$$D = b^{2} - 4ac$$

$$= (-1)^{2} - 4 \times \sqrt{2} \times \sqrt{2}$$

$$= -7$$

Hence, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-(-1) \pm \sqrt{-7}}{2 \times \sqrt{2}}$$
$$= \frac{1 \pm \sqrt{7}i}{2\sqrt{2}} \qquad \left[\because \sqrt{-1} = i\right]$$

Question 8:

Solve the equation $\sqrt{3}x^2 - \sqrt{2}x + 3\sqrt{3} = 0$

Solution:

The given quadratic equation is $\sqrt{3}x^2 - \sqrt{2}x + 3\sqrt{3} = 0$ On comparing the given equation with $ax^2 + bx + c = 0$,

We obtain
$$a = \sqrt{3}$$
, $b = -\sqrt{2}$, and $c = 3\sqrt{3}$

Therefore, the discriminant of the given equation is

$$D = b^{2} - 4ac$$

$$= (-\sqrt{2})^{2} - 4 \times (\sqrt{3}) \times (3\sqrt{3})$$

$$= -34$$

Hence, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-\left(-\sqrt{2}\right) \pm \sqrt{-34}}{2 \times \sqrt{3}}$$
$$= \frac{\sqrt{2} \pm \sqrt{34}i}{2\sqrt{3}} \qquad \left[\because \sqrt{-1} = i\right]$$

Question 9:

Solve the equation
$$x^2 + x + \frac{1}{\sqrt{2}} = 0$$

Solution:

The given quadratic equation is
$$x^2 + x + \frac{1}{\sqrt{2}} = 0$$

This equation can also be written as $\sqrt{2}x^2 + \sqrt{2}x + 1 = 0$

On comparing the given equation with
$$ax^2 + bx + c = 0$$
,
We obtain $a = \sqrt{2}$, $b = \sqrt{2}$ and $c = 1$

Therefore, the discriminant of the given equation is

$$D = b^{2} - 4ac$$

$$= (\sqrt{2})^{2} - 4 \times (\sqrt{2}) \times 1$$

$$= 2 - 4\sqrt{2}$$

Hence, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-\sqrt{2} \pm \sqrt{2 - 4\sqrt{2}}}{2 \times \sqrt{2}}$$

$$= \frac{-\sqrt{2} \pm \sqrt{2 \left(1 - 2\sqrt{2}\right)}}{2\sqrt{2}}$$

$$= \left(\frac{-\sqrt{2} \pm \sqrt{2} \left(\sqrt{2\sqrt{2} - 1}\right)i}{2\sqrt{2}}\right)$$

$$= \frac{-1 \pm \left(\sqrt{2\sqrt{2} - 1}\right)i}{2}$$

Question 10:

Solve the equation
$$x^2 + \frac{x}{\sqrt{2}} + 1 = 0$$

Solution:

The given quadratic equation is $x^2 + \frac{x}{\sqrt{2}} + 1 = 0$ This equation can also be written as $\sqrt{2}x^2 + x + \sqrt{2} = 0$ On comparing the given equation with $ax^2 + bx + c = 0$, We obtain $a = \sqrt{2}$, b = 1 and $c = \sqrt{2}$

Therefore, the discriminant of the given equation is

$$D = b^{2} - 4ac$$

$$= (1)^{2} - 4 \times (\sqrt{2}) \times (\sqrt{2})$$

$$= 1 - 8$$

$$= -7$$

Hence, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-1 \pm \sqrt{-7}}{2 \times \sqrt{2}}$$
$$= \frac{-1 \pm \sqrt{7}i}{2\sqrt{2}} \qquad \left[\because \sqrt{-1} = i\right]$$

MISCELLANEOUS EXERCISE

Question 1:

Evaluate:
$$\left[i^{18} + \left(\frac{1}{i}\right)^{25}\right]^3$$

Solution:

$$\left[i^{18} + \left(\frac{1}{i}\right)^{25}\right]^{3} = \left[i^{4\times4+2} + \frac{1}{i^{4\times6+1}}\right]^{3}$$

$$= \left[i^{4}\right]^{4} \times i^{2} + \frac{1}{\left(i^{4}\right)^{6} \times i}$$

$$= \left[i^{2} + \frac{1}{i}\right]^{3} \qquad \left[\because i^{4} = 1\right]$$

$$= \left[-1 + \frac{1}{i} \times \frac{i}{i}\right]^{3} \qquad \left[\because i^{2} = -1\right]$$

$$= \left[-1 - i\right]^{3}$$

$$= \left[-1 - i\right]^{3}$$

$$= \left[-1\right]^{3} \left[1 + i\right]^{3}$$

$$= -\left[1^{3} + i^{3} + 3 \times 1 \times i \left(1 + i\right)\right]$$

$$= -\left[1 + i^{3} + 3i + 3i^{2}\right]$$

$$= -\left[1 - i + 3i - 3\right]$$

$$= -\left[-2 + 2i\right]$$

$$= 2 - 2i$$

Question 2:

For any two complex numbers z_1 and z_2 , prove that $\operatorname{Re}(z_1z_2) = \operatorname{Re} z_1 \operatorname{Re} z_2 - \operatorname{Im} z_1 \operatorname{Im} z_2$

Let
$$z_1 = x_1 + iy_1$$
 and $z_2 = x_2 + iy_2$

$$z_1 z_2 = (x_1 + iy_1)(x_2 + iy_2)$$

$$= x_1(x_2 + iy_2) + iy_1(x_2 + iy_2)$$

$$= x_1 x_2 + ix_1 y_2 + iy_1 x_2 + i^2 y_1 y_2$$

$$= x_1 x_2 + ix_1 y_2 + iy_1 x_2 - y_1 y_2 \qquad \left[\because i^2 = -1\right]$$

$$= (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + y_1 x_2)$$

$$\Rightarrow \operatorname{Re}(z_1 z_2) = x_1 x_2 - y_1 y_2$$

$$\Rightarrow \operatorname{Re}(z_1 z_2) = \operatorname{Re} z_1 \operatorname{Re} z_2 - \operatorname{Im} z_1 \operatorname{Im} z_2$$

Hence, proved.

Question 3:

Reduce $\left(\frac{1}{1-4i} - \frac{2}{1+i}\right) \left(\frac{3-4i}{5+i}\right)$ to the standard form

$$\left(\frac{1}{1-4i} - \frac{2}{1+i}\right) \left(\frac{3-4i}{5+i}\right) = \left[\frac{(1+i)-2(1-4i)}{(1-4i)(1+i)}\right] \left[\frac{3-4i}{5+i}\right]$$

$$= \left[\frac{1+i-2+8i}{1+i-4i-4i^2}\right] \left[\frac{3-4i}{5+i}\right]$$

$$= \left[\frac{-1+9i}{5-3i}\right] \left[\frac{3-4i}{5+i}\right]$$

$$= \left[\frac{-3+4i+27i-36i^2}{25+5i-15i-3i^2}\right]$$

$$= \frac{33+31i}{28-10i}$$

$$= \frac{33+31i}{2(14-5i)}$$

$$= \frac{(33+31i)}{2(14-5i)} \times \frac{(14+5i)}{(14+5i)}$$

$$= \frac{462+165i+434i+155i^2}{2\left[(14)^2-(5i)^2\right]}$$

$$= \frac{307+599i}{2(221)}$$

$$= \frac{307+599i}{2(221)}$$

$$= \frac{307+599i}{2(221)}$$

On multiplying numerator and denominator by (14+5i)

This is the required standard form.

Question 4:

If
$$x - iy = \sqrt{\frac{a - ib}{c - id}}$$
 prove that $(x^2 + y^2)^2 = \frac{a^2 + b^2}{c^2 + d^2}$

Solution:

$$x - iy = \sqrt{\frac{a - ib}{c - id}} = \sqrt{\frac{a - ib}{c - id}} \times \frac{c + id}{c + id}$$

$$= \sqrt{\frac{(ac + bd) + i(ad - bc)}{c^2 + d^2}}$$

$$(x - iy)^2 = \frac{(ac + bd) + i(ad - bc)}{c^2 + d^2}$$

$$x^2 - y^2 - 2ixy = \frac{(ac + bd)}{c^2 + d^2} + i\frac{(ad - bc)}{c^2 + d^2}$$

On multiplying numerator and denominator by (c+id)

On comparing real and imaginary parts, we obtain

$$x^{2} - y^{2} = \frac{ac + bd}{c^{2} + d^{2}}, -2xy = \frac{ad - bc}{c^{2} + d^{2}}$$
 ...(1)

Since,

$$(x^{2} + y^{2})^{2} = (x^{2} - y^{2})^{2} + (2xy)^{2}$$

$$= \left(\frac{ac + bd}{c^{2} + d^{2}}\right)^{2} + \left(\frac{ad - bc}{c^{2} + d^{2}}\right)^{2} \qquad [Using (1)]$$

$$= \frac{a^{2}c^{2} + b^{2}d^{2} + 2acbd + a^{2}d^{2} + b^{2}c^{2} - 2abcd}{(c^{2} + d^{2})^{2}}$$

$$= \frac{a^{2}c^{2} + b^{2}d^{2} + a^{2}d^{2} + b^{2}c^{2}}{(c^{2} + d^{2})^{2}}$$

$$= \frac{a^{2}(c^{2} + d^{2}) + b^{2}(c^{2} + d^{2})}{(c^{2} + d^{2})^{2}}$$

$$= \frac{(a^{2} + b^{2})(c^{2} + d^{2})}{(c^{2} + d^{2})^{2}}$$

$$= \frac{(a^{2} + b^{2})}{(c^{2} + d^{2})^{2}}$$

$$= \frac{(a^{2} + b^{2})}{(c^{2} + d^{2})}$$

Hence, proved.

Question 5:

Convert the following in the polar form:

(i)
$$\frac{1+7i}{(2-i)^2}$$
 (ii) $\frac{1+3i}{1-2i}$

Solution:

(i) Here,

$$z = \frac{1+7i}{(2-i)^2}$$

$$= \frac{1+7i}{(2-i)^2} = \frac{1+7i}{4+i^2-4i} = \frac{1+7i}{4-1-4i}$$

$$= \frac{1+7i}{3-4i} \times \frac{3+4i}{3+4i} = \frac{3+4i+21i+28i^2}{3^2+4^2}$$

$$= \frac{3+25i-28}{25} = \frac{-25+25i}{25}$$

$$= -1+i$$

Let $r\cos\theta = -1$ and $r\sin\theta = 1$

On squaring and adding, we obtain

$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = (-1)^{2} + 1^{2}$$

$$r^{2} (\cos^{2} \theta + \sin^{2} \theta) = 1 + 1$$

$$r^{2} = 2$$

$$r = \sqrt{2}$$
[Conventionally, $r > 0$]

Therefore,

$$\sqrt{2}\cos\theta = -1 \text{ and } \sqrt{2}\sin\theta = 1$$

 $\Rightarrow \cos\theta = -\frac{1}{\sqrt{2}} \quad \sin\theta = \frac{1}{\sqrt{2}}$

Since, θ lies in the quadrant II, $\theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$ Hence,

$$z = r\cos\theta + ir\sin\theta$$
$$= \sqrt{2}\cos\frac{3\pi}{4} + i\sqrt{2}\sin\frac{3\pi}{4}$$
$$= \sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$$

This is the required polar form.

(ii) Here,

$$z = \frac{1+3i}{1-2i}$$

$$= \frac{1+3i}{1-2i} \times \frac{1+2i}{1+2i}$$

$$= \frac{1+2i+3i+6i^2}{1^2+2^2} = \frac{1+5i-6}{5}$$

$$= \frac{-5+5i}{5} = -1+i$$

Let $r\cos\theta = -1$ and $r\sin\theta = 1$

On squaring and adding, we obtain

$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = (-1)^{2} + 1^{2}$$
$$r^{2} (\cos^{2} \theta + \sin^{2} \theta) = 1 + 1$$
$$r^{2} = 2$$
$$r = \sqrt{2}$$

[Conventionally, r > 0]

Therefore,

$$\sqrt{2}\cos\theta = -1 \text{ and } \sqrt{2}\sin\theta = 1$$

 $\Rightarrow \cos\theta = -\frac{1}{\sqrt{2}} \quad \sin\theta = \frac{1}{\sqrt{2}}$

Since, θ lies in the quadrant II, $\theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$ Hence,

$$z = r\cos\theta + ir\sin\theta$$
$$= \sqrt{2}\cos\frac{3\pi}{4} + i\sqrt{2}\sin\frac{3\pi}{4}$$
$$= \sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$$

This is the required polar form.

Question 6:

Solve the equation $3x^2 - 4x + \frac{20}{3} = 0$

Solution:

The given quadratic equation is $3x^2 - 4x + \frac{20}{3} = 0$ This equation can also be written as $9x^2 - 12x + 20 = 0$

On comparing this equation with $ax^2 + bx + c = 0$, we obtain a = 9, b = -12 and c = 20

Therefore, the discriminant of the given equation is

$$D = b^{2} - 4ac$$

$$= (-12)^{2} - 4 \times 9 \times 20$$

$$= 144 - 720$$

$$= -576$$

Hence, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-(-12) \pm \sqrt{-576}}{2 \times 9}$$

$$= \frac{12 \pm \sqrt{576}i}{18} \qquad \left[\because \sqrt{-1} = i\right]$$

$$= \frac{12 \pm 24i}{18}$$

$$= \frac{6(2 \pm 4i)}{18}$$

$$= \frac{2 \pm 4i}{3}$$

$$= \frac{2}{3} \pm \frac{4}{3}i$$

Question 7:

Solve the equation $x^2 - 2x + \frac{3}{2} = 0$

Solution:

The given quadratic equation is $x^2 - 2x + \frac{3}{2} = 0$ This equation can also be written as $2x^2 - 4x + 3 = 0$

On comparing this equation with $ax^2 + bx + c = 0$, we obtain a = 2, b = -4 and c = 3

Therefore, the discriminant of the given equation is

$$D = b^{2} - 4ac$$

$$= (-4)^{2} - 4 \times 2 \times 3$$

$$= 16 - 24$$

$$= -8$$

Hence, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-(-4) \pm \sqrt{-8}}{2 \times 2}$$

$$= \frac{4 \pm 2\sqrt{2}i}{4} \qquad \left[\because \sqrt{-1} = i\right]$$

$$= \frac{2 \pm \sqrt{2}i}{2}$$

$$= 1 \pm \frac{\sqrt{2}}{2}i$$

Question 8:

Solve the equation $27x^2 - 10x + 1 = 0$

Solution:

The given quadratic equation is $27x^2 - 10x + 1 = 0$

On comparing this equation with $ax^2 + bx + c = 0$, we obtain a = 27, b = -10 and c = 1

Therefore, the discriminant of the given equation is

$$D = b^{2} - 4ac$$

$$= (-10)^{2} - 4 \times 27 \times 1$$

$$= 100 - 108$$

$$= -8$$

Hence, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-(-10) \pm \sqrt{-8}}{2 \times 27}$$

$$= \frac{10 \pm 2\sqrt{2}i}{54} \qquad \left[\because \sqrt{-1} = i\right]$$

$$= \frac{5 \pm \sqrt{2}i}{27}$$

$$= \frac{5}{27} \pm \frac{\sqrt{2}}{27}i$$

Question 9:

Solve the equation $21x^2 - 28x + 10 = 0$

The given quadratic equation is $21x^2 - 28x + 10 = 0$ On comparing this equation with $ax^2 + bx + c = 0$, we obtain a = 21, b = -28 and c = 10

Therefore, the discriminant of the given equation is

$$D = b^{2} - 4ac$$

$$= (-28)^{2} - 4 \times 21 \times 10$$

$$= 784 - 840$$

$$= -56$$

Hence, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-(-28) \pm \sqrt{-56}}{2 \times 21}$$

$$= \frac{28 \pm \sqrt{56}i}{42} \qquad \left[\because \sqrt{-1} = i\right]$$

$$= \frac{28 \pm 2\sqrt{14}i}{42}$$

$$= \frac{28}{42} \pm \frac{2\sqrt{14}}{42}i$$

$$= \frac{2}{3} \pm \frac{\sqrt{14}}{21}i$$

Question 10:

If
$$z_1 = 2 - i$$
, $z_2 = 1 + i$, find $\begin{vmatrix} z_1 + z_2 + 1 \\ z_1 - z_2 + 1 \end{vmatrix}$

Solution:

$$z_1 = 2 - i$$
, $z_2 = 1 + i$
Therefore,

$$\left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + 1} \right| = \left| \frac{(2 - i) + (1 + i) + 1}{(2 - i) - (1 + i) + 1} \right|$$

$$= \left| \frac{4}{2 - 2i} \right| = \left| \frac{4}{2(1 - i)} \right|$$

$$= \left| \frac{2}{1 - i} \times \frac{1 + i}{1 + i} \right| = \left| \frac{2(1 + i)}{(1^2 - i^2)} \right|$$

$$= \left| \frac{2(1 + i)}{1 + 1} \right|$$

$$= \left| \frac{2(1 + i)}{1 + 1} \right|$$

$$= \left| \frac{2(1 + i)}{2} \right|$$

$$= |1 + i| = \sqrt{1^2 + 1^2}$$

$$= \sqrt{2}$$

$$= \sqrt{2}$$

$$= \sqrt{2}$$

$$= \sqrt{2}$$

$$= \sqrt{2}$$

$$= \sqrt{2}$$

Thus, the value of $\left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + 1} \right|$ is $\sqrt{2}$.

Question 11:

If
$$a+ib = \frac{(x+i)^2}{2x^2+1}$$
, prove that $a^2+b^2 = \frac{(x^2+1)^2}{(2x^2+1)^2}$

Solution:

$$a+ib = \frac{(x+i)^2}{2x^2+1}$$

$$a+ib = \frac{(x+i)^2}{2x^2+1} = \frac{x^2+i^2+i2x}{2x^2+1}$$

$$= \frac{x^2-1+i2x}{2x^2+1}$$

$$= \frac{x^2-1}{2x^2+1} + i\left(\frac{2x}{2x^2+1}\right)$$

On comparing real and imaginary parts, we obtain

$$a = \frac{x^2 - 1}{2x^2 + 1}$$
 and $b = \frac{2x}{2x^2 + 1}$

Since,

$$a^{2} + b^{2} = \left(\frac{x^{2} - 1}{2x^{2} + 1}\right)^{2} + \left(\frac{2x}{2x^{2} + 1}\right)^{2}$$

$$= \frac{x^{4} + 1 - 2x^{2} + 4x^{2}}{\left(2x^{2} + 1\right)^{2}}$$

$$= \frac{x^{4} + 1 + 2x^{2}}{\left(2x^{2} + 1\right)^{2}}$$

$$a^{2} + b^{2} = \frac{\left(x^{2} + 1\right)^{2}}{\left(2x^{2} + 1\right)^{2}}$$
Here, $a^{2} + b^{2} = \frac{1}{\left(2x^{2} + 1\right)^{2}}$

Hence, proved.

Question 12:

Let $z_1 = 2 - i$, $z_2 = -2 + i$. Find

(i)
$$\operatorname{Re}\left(\frac{z_1 z_2}{\overline{z}_1}\right)$$
, (ii) $\operatorname{Im}\left(\frac{1}{z_1 \overline{z}_1}\right)$

(ii)
$$\operatorname{Im}\left(\frac{1}{z_1\overline{z}_1}\right)$$

Solution:

(i) It is given that
$$z_1 = 2 - i$$
, $z_2 = -2 + i$

$$z_1 z_2 = (2 - i)(-2 + i)$$

$$= -4 + 2i + 2i - i^2$$

$$= -4 + 4i - (-1)$$

Now,
$$\overline{z}_1 = 2 + i$$

= -3 + 4i

Hence,
$$\frac{z_1 z_2}{\overline{z}_1} = \frac{-3 + 4i}{2 + i}$$

On multiplying numerator and denominator by (2-i), we obtain

$$\frac{z_1 z_2}{\overline{z}_1} = \frac{(-3+4i)(2-i)}{(2+i)(2-i)} = \frac{-6+3i+8i-4i^2}{2^2+1^2} = \frac{-6+11i-4(-1)}{5}$$
$$= \frac{-2+11i}{5} = \frac{-2}{5} + \frac{11}{5}i$$

On comparing real parts, we obtain

$$\operatorname{Re}\left(\frac{z_1 z_2}{\overline{z}_1}\right) = -\frac{2}{5}$$

(ii)
$$\frac{1}{z_1\overline{z_1}} = \frac{1}{(2+i)(2-i)} = \frac{1}{(2)^2 + (1)^2} = \frac{1}{5}$$

On comparing imaginary parts, we obtain

$$\operatorname{Im}\left(\frac{1}{z_1\overline{z}_1}\right) = 0$$

Question 13:

Find the modulus and argument of the complex number $\frac{1+2i}{1-3i}$ Solution:

Let
$$z = \frac{1+2i}{1-3i},$$

Then,

$$z = \frac{1+2i}{1-3i} \times \frac{1+3i}{1+3i} = \frac{1+2i+3i+6i^2}{1^2+3^2} = \frac{1+5i+6(-1)}{10}$$
$$= \frac{-5+5i}{10} = \frac{-5}{10} + \frac{5}{10}i = \frac{-1}{2} + \frac{1}{2}i$$

Let $z = r \cos \theta + ir \sin \theta$

i.e.,
$$r\cos\theta = -\frac{1}{2}$$
 and $r\sin\theta = \frac{1}{2}$

On squaring and adding, we obtain

$$r^{2}\left(\cos^{2}\theta + \sin^{2}\theta\right) = \left(-\frac{1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{2}$$

$$\Rightarrow r^{2} = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

$$\Rightarrow r = \frac{1}{\sqrt{2}}$$
 [Conventionally, $r > 0$]

Therefore,

$$\frac{1}{\sqrt{2}}\cos\theta = -\frac{1}{2} \text{ and } \frac{1}{\sqrt{2}}\sin\theta = \frac{1}{2}$$

$$\Rightarrow \cos\theta = \frac{-1}{\sqrt{2}} \text{ and } \sin\theta = \frac{1}{\sqrt{2}}$$

Since, θ lies in the quadrant II, $\theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$

Thus, the modulus and argument of the given complex number are $\frac{1}{\sqrt{2}}$ and $\frac{3\pi}{4}$ respectively.

Question 14:

Find the real numbers x and y if (x-iy)(3+5i) is the conjugate of -6-24i

Solution:

Let,

$$z = (x-iy)(3+5i)$$

$$= 3x-i3y+i5x-i^25y$$

$$= 3x+i5x-i3y+5y$$

$$= (3x+5y)+i(5x-3y)$$

Then,
$$\overline{z} = (3x+5y)-i(5x-3y)$$

It is given that, $\overline{z} = -6 - 24i$

Therefore,
$$(3x+5y)-i(5x-3y) = -6-24i$$

Equating real and imaginary parts, we obtain

$$3x + 5y = -6$$
 ...(1)
 $5x - 3y = 24$...(2)

Multiplying equation (1) by 3 and equation (2) by 5 and then adding them, we obtain

$$9x + 15y = -18$$
$$25x - 15y = 120$$

On adding both equations we get,

$$34x = 102$$
$$x = \frac{102}{34}$$
$$x = 3$$

Putting the value of x in equation (1), we obtain

$$3(3)+5y=-6$$

$$5y=-6-9$$

$$y=\frac{-15}{5}$$

$$y=-3$$

Thus, the values of x = 3 and y = -3

Question 15:

Find the modulus of
$$\frac{1+i}{1-i} - \frac{1-i}{1+i}$$

Solution:

$$\frac{1+i}{1-i} - \frac{1-i}{1+i} = \frac{(1+i)^2 - (1-i)^2}{(1-i)(1+i)}$$

$$= \frac{1+i^2 + 2i - 1 - i^2 + 2i}{2}$$

$$= \frac{4i}{2}$$

$$= 2i$$

Therefore,

$$\left| \frac{1+i}{1-i} - \frac{1-i}{1+i} \right| = \left| 2i \right|$$

$$= \sqrt{2^2}$$

$$= 2$$

Question 16:

If
$$(x+iy)^3 = u+iv$$
, then show that $\frac{u}{x} + \frac{v}{y} = 4(x^2 - y^2)$

Solution:

It is given that
$$(x+iy)^3 = u+iv$$

$$\Rightarrow x^3 + (iy)^3 + 3 \times x \times iy(x+iy) = u+iv$$

$$\Rightarrow x^3 + i^3y^3 + 3x^2yi + 3xy^2i^2 = u+iv$$

$$\Rightarrow x^3 - iy^3 + 3x^2yi - 3xy^2 = u+iv$$

$$\Rightarrow (x^3 - 3xy^2) + i(3x^2y - y^3) = u+iv$$

On equating real and imaginary parts, we obtain

$$u = x^3 - 3xy^2$$
, $v = 3x^2y - y^3$

Therefore,

$$\frac{u}{x} + \frac{v}{y} = \frac{x^3 - 3xy^2}{x} + \frac{3x^2y - y^3}{y}$$

$$= \frac{x(x^2 - 3y^2)}{x} + \frac{y(3x^2 - y^2)}{y}$$

$$= x^2 - 3y^2 + 3x^2 - y^2$$

$$= 4x^2 - 4y^2$$

$$= 4(x^2 - y^2)$$

Hence, $\frac{u}{x} + \frac{v}{y} = 4(x^2 - y^2)$ proved.

Question 17:

If α and β are different complex numbers with $|\beta| = 1$, then find $\frac{|\beta - \alpha|}{|1 - \overline{\alpha}\beta|}$

Solution:

Let $\alpha = a + ib$ and $\beta = x + iy$

It is given that, $|\beta| = 1$

Therefore,

$$\sqrt{x^2 + y^2} = 1$$

$$x^2 + y^2 = 1 \qquad \dots (i)$$

$$\left| \frac{\beta - \alpha}{1 - \overline{\alpha} \beta} \right| = \left| \frac{(x + iy) - (a + ib)}{1 - (a - ib)(x + iy)} \right|$$

$$= \left| \frac{(x - a) + i(y - b)}{1 - (ax + iay - ibx + by)} \right|$$

$$= \left| \frac{(x - a) + i(y - b)}{(1 - ax - by) + i(bx - ay)} \right|$$

$$= \frac{\left| (x - a) + i(y - b) \right|}{\left| (1 - ax - by) + i(bx - ay) \right|} \qquad \left[\because \left| \frac{z_1}{z_2} \right| = \frac{\left| z_1 \right|}{\left| z_2 \right|} \right]$$

$$\left| \frac{\beta - \alpha}{1 - \overline{\alpha} \beta} \right| = \frac{\sqrt{(x - a)^2 + (y - b)^2}}{\sqrt{(1 - ax - by)^2 + (bx - ay)^2}}$$

$$= \frac{\sqrt{x^2 + a^2 - 2ax + y^2 + b^2 - 2by}}{\sqrt{1 + a^2 x^2 + b^2 y^2 - 2ax + 2abxy - 2by + b^2 x^2 + a^2 y^2 - 2abxy}}$$

$$= \frac{\sqrt{(x^2 + y^2) + a^2 + b^2 - 2ax - 2by}}{\sqrt{1 + a^2 (x^2 + y^2) + b^2 (y^2 + x^2) - 2ax - 2by}}$$

$$= \frac{\sqrt{1 + a^2 + b^2 - 2ax - 2by}}{\sqrt{1 + a^2 + b^2 - 2ax - 2by}}$$

$$= 1$$
[Using (i)]
$$= 1$$

Thus,
$$\left| \frac{\beta - \alpha}{1 - \overline{\alpha}\beta} \right| = 1$$

Question 18:

Find the number of non-zero integral solutions of the equation $|1-i|^x = 2^x$

$$|1-i|^{x} = 2^{x}$$

$$\left(\sqrt{1^{2} + (-1)^{2}}\right) = 2^{x}$$

$$\left(\sqrt{2}\right)^{x} = 2^{x}$$

$$2^{x/2} = 2^{x}$$

$$\frac{x}{2} = x$$

$$x = 2x$$

$$2x - x = 0$$

$$x = 0$$

Thus, 0 is the only integral solution of the given equation.

Therefore, the number of non-zero integral solutions of the given equation is 0.

Question 19:

If
$$(a+ib)(c+id)(e+if)(g+ih) = A+iB$$
, then show that:
 $(a^2+b^2)(c^2+d^2)(e^2+f^2)(g^2+h^2) = A^2+B^2$

Solution:

It is given that, (a+ib)(c+id)(e+if)(g+ih) = A+iB

Therefore,

$$|(a+ib)(c+id)(e+if)(g+ih)| = |A+iB|$$

$$|(a+ib)| \times |(c+id)| \times |(e+if)| \times |(g+ih)| = |A+iB|$$

$$\sqrt{a^2+b^2} \times \sqrt{c^2+d^2} \times \sqrt{e^2+f^2} \times \sqrt{g^2+h^2} = \sqrt{A^2+B^2}$$

$$\sqrt{(a^2+b^2)(c^2+d^2)(e^2+f^2)(g^2+h^2)} = \sqrt{A^2+B^2}$$

On squaring both sides, we obtain

$$(a^2+b^2)(c^2+d^2)(e^2+f^2)(g^2+h^2) = A^2+B^2$$

Hence, proved.

Question 20:

If
$$\left(\frac{1+i}{1-i}\right)^m = 1$$
 then find the least positive integral value of m.

It is given that
$$\left(\frac{1+i}{1-i}\right)^{m} = 1$$

$$\left(\frac{1+i}{1-i} \times \frac{1+i}{1+i}\right)^{m} = 1$$

$$\left(\frac{\left(1+i\right)^{2}}{1^{2}+1^{2}}\right)^{m} = 1$$

$$\left(\frac{1^{2}+i^{2}+2i}{2}\right)^{m} = 1$$

$$\left(\frac{1-1+2i}{2}\right)^{m} = 1$$

$$\left(\frac{2i}{2}\right)^{m} = 1$$

$$i^{m} = i^{4k}$$

Hence, m = 4k, where k is some integer.

Since, the least positive integer is 1, $m = 4 \times 1 = 4$

Thus, the least positive integral value of m = 4

When you learn math in an interesting way, you never forget.

25 Million

Math classes & counting

100K+

Students learning Math the right way

20+ Countries

Present across USA, UK, Singapore, India, UAE & more.

Why choose Cuemath?

"Cuemath is a valuable addition to our family. We love solving puzzle cards. My daughter is now visualizing maths and solving problems effectively!"

"Cuemath is great because my son has a one-on-one interaction with the teacher. The instructor has developed his confidence and I can see progress in his work. One-on-one interaction is perfect and a great bonus."

"I appreciate the effort that miss Nitya puts in to help my daughter understand the best methods and to explain why she got a problem incorrect. She is extremely patient and generous with Miranda."

- Gary Schwartz

- Kirk Riley

- Barbara Cabrera

Get the Cuemath advantage

Book a FREE trial class