

Come experience the Cuemath methodology and ensure your child stays ahead at math this summer.

Adaptive

Platform

Interactive Visual

Simulations

Personalized Attention

For Grades 1 - 10

LIVE online classes by trained and certified experts.

Get the Cuemath advantage

Book a FREE trial class

NCERT Solutions Class 11 Maths Chapter 6 Linear Inequalities

Question 1:

Solve 24x < 100, when (i) x is a natural number (ii) x is an integer

Solution:

The given inequality is 24x < 100, 24x < 100 $\Rightarrow \frac{24x}{24} < \frac{100}{24}$ [Dividing both sides by same positive number] $\Rightarrow x < \frac{25}{6}$

(i) It is evident that 1, 2, 3 and 4 are the only natural numbers less than $\overline{6}$ Thus, when x is a natural number, the solutions of the given inequalities are 1, 2, 3 and 4 Hence, in this case, the solution set is $\{1, 2, 3, 4\}$.

25

(ii) The integer less than $\overline{6}$ are $\dots -3, -2, -1, 0, 1, 2, 3, 4$. Thus, when x is an integer, the solutions of the given inequality are $\dots, -3, -2, -1, 0, 1, 2, 3, 4$ Hence, in this case, the solution set is $\{-3, -2, -1, 0, 1, 2, 3, 4\}$

Question 2:

Solve -12x > 30, when (i) x is a natural number (ii) x is an integer

Solution:

The given inequality is -12x > 30 $\Rightarrow -12x > 30$ $\Rightarrow \frac{-12x}{-12} < \frac{30}{-12}$ [Dividing both sides by same negative number] $\Rightarrow x < -\frac{5}{2}$

 $-\frac{5}{2}$

(i) There is no natural number less than $\begin{pmatrix} 2 \end{pmatrix}$. Thus, when x is a natural number, there is no solution of the given inequality.

(ii) The integer less than $\left(-\frac{5}{2}\right)$ are ..., -5, -4, -3.

Thus, when x is an integer, the solutions of the given inequality are $\dots, -5, -4, -3$ Hence, in this case, the solution set is $\{\dots, -5, -4, -3\}$.

Question 3:

Solve 5x-3 < 7, when (i) x is an integer (ii) x is a real number

Solution:

The given inequality is 5x - 3 < 7.

$$5x - 3 < 7$$

$$\Rightarrow 5x - 3 + 3 < 7 + 3$$

$$\Rightarrow 5x < 10$$

$$\Rightarrow \frac{5x}{5} < \frac{10}{5}$$

$$\Rightarrow x < 2$$

- (i) The integers less than 2 are ..., -4, -3, -2, -1, 0, 1.
 Thus, when x is an integer, the solutions of the given inequality are ..., -4, -3, -2, -1, 0, 1
 Hence, in this case, the solution set is {..., -4, -3, -2, -1, 0, 1}
- (ii) When x is a real number, the solutions of the given inequality are given by x < 2 that is all real numbers x which are less than 2.

Thus, the solution set of the given inequality is $(-\infty, 2)$.

Question 4:

Solve 3x+8>2, when (i) x is an integer (ii) x is a real number

Solution:

The given inequality is 3x + 8 > 2

$$3x + 8 > 2$$

$$\Rightarrow 3x + 8 - 8 > 2 - 8$$

$$\Rightarrow 3x > -6$$

$$\Rightarrow \frac{3x}{3} > \frac{-6}{3}$$

$$\Rightarrow x > -2$$

- (i) The integers greater than -2 are -1,0,1,2,...
 Thus, when x is an integer, the solutions of the given inequality are -1,0,1,2...
 Hence, in this case, the solution set is {-1,0,1,2,...}.
- (ii) When x is a real number, the solutions of the given of the inequality are all the real numbers, which are greater than -2.

Thus, in this case the solution set is $(-2,\infty)$.

Question 5:

Solve the given inequality for real x: 4x + 3 < 5x + 7

Solution:

$$4x + 3 < 5x + 7$$

$$\Rightarrow 4x + 3 - 7 < 5x + 7 - 7$$

$$\Rightarrow 4x - 4 < 5x$$

$$\Rightarrow 4x - 4 - 4x < 5x - 4x$$

$$\Rightarrow -4 < x$$

$$\Rightarrow x > -4$$

Thus, all real numbers x, which are greater than -4, are the solutions of the given inequality. Hence, the solution set of the given inequality is $(-4,\infty)$.

Question 6:

Solve the given inequality for real x: 3x-7 > 5x-1

Solution:

$$3x - 7 > 5x - 1$$

$$\Rightarrow 3x - 7 + 7 > 5x - 1 + 7$$

$$\Rightarrow 3x > 5x + 6$$

$$\Rightarrow 3x - 5x > 5x + 6 - 5x$$

$$\Rightarrow -2x > 6$$

$$\Rightarrow -x > 3$$

$$\Rightarrow x < -3$$

Thus, all real numbers x, which are less than -3, are the solutions of the given inequality. Hence, the solution set of the given inequality is $(-\infty, -3)$

Question 7:

Solve the given inequality for real $x:3(x-1) \le 2(x-3)$

Solution:

$$3(x-1) \le 2(x-3)$$

$$\Rightarrow 3x-3 \le 2x-6$$

$$\Rightarrow 3x-3+3 \le 2x-6+3$$

$$\Rightarrow 3x \le 2x-3$$

$$\Rightarrow 3x-2x \le 2x-3-2x$$

$$\Rightarrow x \le -3$$

Thus, all real numbers x, which are less than or equal to -3, are the solutions of the given inequality.

Hence, the solution set of the given inequality is $(-\infty, -3]$ Question 8:

Solve the given inequality for real $x: 3(2-x) \ge 2(1-x)$

Solution:

$$3(2-x) \ge 2(1-x)$$

$$\Rightarrow 6-3x \ge 2-2x$$

$$\Rightarrow 6-3x+2x \ge 2-2x+2x$$

$$\Rightarrow 6-x \ge 2$$

$$\Rightarrow 6-x-6 \ge 2-6$$

$$\Rightarrow -x \ge -4$$

$$\Rightarrow x \le 4$$

Thus, all real numbers x, which are less than or equal to 4, are the solutions of the given inequality.

Hence, the solution set of the given inequality is $(-\infty, 4]$

Question 9:

Solve the given inequality for real $x: x + \frac{x}{2} + \frac{x}{3} < 11$

Solution:

$$x + \frac{x}{2} + \frac{x}{3} < 11$$

$$\Rightarrow x \left(1 + \frac{1}{2} + \frac{1}{3} \right) < 11$$

$$\Rightarrow x \left(\frac{6 + 3 + 2}{6} \right) < 11$$

$$\Rightarrow \frac{11}{6} x < 11$$

$$\Rightarrow \frac{11x}{6 \times 11} < \frac{11}{11}$$

$$\Rightarrow \frac{x}{6} < 1$$

$$\Rightarrow x < 6$$

Thus, all real numbers x, which are less than 6, are the solutions of the given inequality.

Hence, the solution set of the given inequality is $(-\infty, 6)$.

Question 10:

Solve the given inequality for real $x:\frac{x}{3} > \frac{x}{2} + 1$. Solution:

$$\frac{x}{3} > \frac{x}{2} + 1$$

$$\Rightarrow \frac{x}{3} - \frac{x}{2} > 1$$

$$\Rightarrow \frac{2x - 3x}{6} > 1$$

$$\Rightarrow -\frac{x}{6} > 1$$

$$\Rightarrow -x > 6$$

$$\Rightarrow x < -6$$

Thus, all real numbers x, which are less than -6, are the solutions of the given inequality.

Hence, the solution set of the given inequality is $(-\infty, -6)$

Question 11:

Solve the given inequality for real $x: \frac{3(x-2)}{5} \le \frac{5(2-x)}{3}$

Solution:

$$\frac{3(x-2)}{5} \le \frac{5(2-x)}{3}$$

$$\Rightarrow 9(x-2) \le 25(2-x)$$

$$\Rightarrow 9x - 18 \le 50 - 25x$$

$$\Rightarrow 9x + 25x \le 50 + 18$$

$$\Rightarrow 34x \le 68$$

$$\Rightarrow x \le \frac{68}{34}$$

$$\Rightarrow x \le 2$$

Thus, all real numbers x, which are less than or equal to 2, are the solutions of the given inequality.

Hence, the solution set of the given inequality is $(-\infty, 2]$

Question 12:

Solve the given inequality for real
$$x: \frac{1}{3}\left(\frac{3x}{5}+4\right) \ge \frac{1}{3}\left(x-6\right)$$

Solution:

$$\frac{1}{2}\left(\frac{3x}{5}+4\right) \ge \frac{1}{3}\left(x-6\right)$$
$$\Rightarrow 3\left(\frac{3x}{5}+4\right) \ge 2(x-6)$$
$$\Rightarrow \frac{9x}{5}+12 \ge 2x-12$$
$$\Rightarrow 12+12 \ge 2x-\frac{9x}{5}$$
$$\Rightarrow 24 \ge \frac{10x-9x}{5}$$
$$\Rightarrow 24 \ge \frac{x}{5}$$
$$\Rightarrow x \le 120$$

Thus, all real numbers x, which are less than or equal to 120, are the solutions of the given inequality.

Hence, the solution set of the given inequality is $(-\infty, 120]$

Question 13:

Solve the given inequality for real x: 2(2x+3) - 10 < 6(x-2)

Solution:

$$2(2x+3)-10 < 6(x-2)$$

$$\Rightarrow 4x+6-10 < 6x-12$$

$$\Rightarrow 4x-4 < 6x-12$$

$$\Rightarrow 12-4 < 6x-4x$$

$$\Rightarrow 8 < 2x$$

$$\Rightarrow x > 4$$

Thus, all real numbers x, which are greater than 4, are the solutions of the given inequality.

Hence, the solution set of the given inequality is $(4,\infty)$.

Question 14:

Solve the given inequality for real $x: 37 - (3x+5) \ge 9x - 8(x-3)$

Solution:

$$37 - (3x + 5) \ge 9x - 8(x - 3)$$

$$\Rightarrow 37 - 3x - 5 \ge 9x - 8x + 24$$

$$\Rightarrow 32 - 3x \ge x + 24$$

$$\Rightarrow 32 - 24 \ge x + 3x$$

$$\Rightarrow 8 \ge 4x$$

$$\Rightarrow x \le 2$$

Thus, all real numbers x, which are less than or equal to 2, are the solutions of the given inequality.

Hence, the solution set of the given inequality is $(-\infty, 2]$

Question 15:

Solve the given inequality for real
$$x: \frac{x}{4} < \frac{(5x-2)}{3} + \frac{(7x-3)}{5}$$

$$\frac{x}{4} < \frac{(5x-2)}{3} + \frac{(7x-3)}{5}$$

$$\Rightarrow \frac{x}{4} < \frac{5(5x-2) - 3(7x-3)}{15}$$

$$\Rightarrow \frac{x}{4} < \frac{25x - 10 - 21x + 9}{3}$$

$$\Rightarrow \frac{x}{4} < \frac{4x - 1}{15}$$

$$\Rightarrow 15x < 4(4x - 1)$$

$$\Rightarrow 15x < 16x - 4$$

$$\Rightarrow 4 < 16x - 15x$$

$$\Rightarrow x > 4$$

Thus, all real numbers *x*, which are greater than 4, are the solutions of the given inequality.

Hence, the solution set of the given inequality is $(4,\infty)$

Question 16:

Solve the given inequality for real
$$x: \frac{(2x-1)}{3} \ge \frac{(3x-2)}{4} - \frac{(2-x)}{5}$$

Solution:

$$\frac{(2x-1)}{3} \ge \frac{(3x-2)}{4} - \frac{(2-x)}{5}$$

$$\Rightarrow \frac{(2x-1)}{3} \ge \frac{5(3x-2)-4(2-x)}{20}$$

$$\Rightarrow \frac{(2x-1)}{3} \ge \frac{15x-10-8+4x}{20}$$

$$\Rightarrow \frac{(2x-1)}{3} \ge \frac{19x-18}{20}$$

$$\Rightarrow 20(2x-1) \ge 3(19x-18)$$

$$\Rightarrow 40x - 20 \ge 57x - 54$$

$$\Rightarrow 40x - 57x \ge 20 - 54$$

$$\Rightarrow -17x \ge -34$$

$$\Rightarrow x \le 2$$

Thus, all real numbers x, which are less than or equal to 2, are the solutions of the given inequality.

Hence, the solution set of the given inequality is $(-\infty, 2]$

Question 17:

Solve the given inequality and show the graph of the solution on number line: 3x-2<2x+1

Solution:

$$3x - 2 < 2x + 1$$
$$\Rightarrow 3x - 2x < 1 + 2$$
$$\Rightarrow x < 3$$

Hence, the solution set of the given inequality is $(-\infty,3)$

The graphical representation of the solutions of the given inequality is as follows:

Question 18:

Solve the given inequality and show the graph of the solution on number line: $5x-3 \ge 3x-5$

Solution:

 $5x - 3 \ge 3x - 5$ $\Rightarrow 5x - 3x \ge -5 + 3$ $\Rightarrow 2x \ge -2$ $\Rightarrow x \ge -1$

Hence, the solution set of the given inequality is $[-1,\infty)$

The graphical representation of the solutions of the given inequality is as follows:

Question 19:

Solve the given inequality and show the graph of the solution on number line: 3(1-x) < 2(x+4)

Solution:

$$3(1-x) < 2(x+4)$$

$$\Rightarrow 3-3x < 2x+8$$

$$\Rightarrow 3-8 < 2x+3x$$

$$\Rightarrow -5 < 5x$$

$$\Rightarrow x > -1$$

Hence, the solution set of the given inequality is $(-1,\infty)$

The graphical representation of the solution of the inequality is as follows:

Question 20:

Solve the given inequality and show the graph of the solution on number line:

$$\frac{x}{2} \ge \frac{(5x-2)}{3} - \frac{(7x-3)}{5}$$

Solution:

$$\frac{x}{2} \ge \frac{(5x-2)}{3} - \frac{(7x-3)}{5}$$
$$\Rightarrow \frac{x}{2} \ge \frac{25x-10-21x+9}{15}$$
$$\Rightarrow \frac{x}{2} \ge \frac{4x-1}{15}$$
$$\Rightarrow 15x \ge 8x-2$$
$$\Rightarrow 15x-8x \ge -2$$
$$\Rightarrow 7x \ge -2$$
$$\Rightarrow x \ge -\frac{2}{7}$$

Hence, the solution set of the given inequality is $\left[-\frac{2}{7},\infty\right)$

The graphical representation of the solution of the given inequality is as follows:

Question 21:

Ravi obtained 70 and 75 marks in first two-unit test. Find the minimum marks he should get in the third test to have an average of at least 60 marks.

Solution:

Let x be the marks obtained by Ravi in the third unit test. Since the students should have an average of at least 60 marks,

$$\frac{70+75+x}{3} \ge 60$$
$$\Rightarrow 145+x \ge 180$$
$$\Rightarrow x \ge 180-145$$
$$\Rightarrow x \ge 35$$

Thus, the student must obtain a minimum of 35 marks to have an average of at least 60 marks.

Question 22:

To receive Grade 'A' in a course, one must obtain an average of 90 marks or more in five examinations (each of 100 marks). If Sunita's marks in first four examinations are 87, 92, 94 and 95, find minimum marks that Sunita must obtain in fifth examination to get grade 'A' in the course.

Solution:

Let *x* be the marks obtained by Sunita in the fifth examination.

In order to receive grade 'A' in the course, she must obtain an average of 90 marks or more in five examinations.

Therefore,

$$\frac{87 + 92 + 94 + 95 + x}{5} \ge 90$$
$$\Rightarrow \frac{368 + x}{5} \ge 90$$
$$\Rightarrow 368 + x \ge 450$$
$$\Rightarrow x \ge 450 - 368$$
$$\Rightarrow x \ge 82$$

Thus, Sunita must obtain a minimum of 82 marks in the fifth examination

Question 23:

Find all pairs of consecutive odd positive integers both of which are smaller than 10 such that their sum is more than 11.

Solution:

Let x be the smaller of the two consecutive odd positive integers. Then, the other integer is (x+2)

Since both the integers are smaller than 10,

$$x + 2 < 10$$

$$\Rightarrow x < 10 - 2$$

$$\Rightarrow x < 8 \qquad \dots(1)$$

Also, the sum of the two integers is more than 11. Therefore,

$$x + (x + 2) > 11$$

$$\Rightarrow 2x + x > 11$$

$$\Rightarrow 2x > 11 - 2$$

$$\Rightarrow 2x > 9$$

$$\Rightarrow x > \frac{9}{2}$$

$$\Rightarrow x > 4.5 \qquad \dots(2)$$

From (1) and (2), we obtain

Since x is an odd positive integer, then values of x are 5 and 7.

When x = 5, the pair is (5,7) and when x = 7, the pair is (7,9)

Thus, the required possible pairs are (5,7) and (7,9).

Question 24:

Find all pairs of consecutive even positive integers, both of which are larger than 5 such that their sum is less than 23.

Solution:

Let x be the smaller of the two consecutive even positive integers, then the other integer is (x+2)

Since both the integers are larger than 5,

x > 5 ...(1)

Also, the sum of the two integers is less than 23

$$x + (x + 2) < 23$$

$$\Rightarrow 2x + 2 < 23$$

$$\Rightarrow 2x < 21$$

$$\Rightarrow x < \frac{21}{2}$$

$$\Rightarrow x < 10.5. \qquad \dots(2)$$

From (1) and (2), we obtain

Since x is an even positive integer, then values of x are 6, 8 and 10.

When x = 6, the pair is (6,8)When x = 8, the pair is (8,10)When x = 10, the pair is (10,12)

Thus, the required possible pairs are (6,8), (8,10) and (10,12).

Question 25:

The longest side of a triangle is 3 times the shortest side and the third side is 2 cm shorter than the longest side. If the perimeter of the triangle is at least 61 cm, find the minimum length of the shortest side.

Solution:

Let the length of the shortest side of the triangle in cm be *x*. Then, length of the longest side in cm = 3x

Length of the third side in cm = (3x - 2)

Since the perimeter of the triangle is at least 61 cm,

Therefore,

$$x + 3x + (3x - 2) \ge 61$$

$$\Rightarrow 7x - 2 \ge 61$$

$$\Rightarrow 7x \ge 61 + 2$$

$$\Rightarrow 7x \ge 63$$

$$\Rightarrow x \ge \frac{63}{7}$$

$$\Rightarrow x \ge 9$$

Thus, the minimum length of the shortest side is 9 cm.

Question 26:

A man wants to cut three lengths from a single piece of board of length 91 cm. The second length is to be 3 cm longer than the shortest and the third length is to be twice as long as the shortest. What are the possible lengths of the shortest board if the third piece is to be at least 5 cm longer than the second?

[Hint: If x is the length of the shortest board, then (x+3) and 2x are the length of the second and third piece, respectively. Thus $x = (x+3) + 2x \le 91$ and $2x \ge (x+3) + 5$]

Solution:

Let the length of the shortest piece in cm be x.

Then, the length of second and third piece in cm are (x+3) and 2x respectively.

Since the three lengths are to be cut from a single piece of board of length 91 cm.

$$x + (x + 3) + 2x \le 91$$

$$\Rightarrow 4x + 3 \le 91$$

$$\Rightarrow 4x \le 91 - 3$$

$$\Rightarrow 4x \le 88$$

$$\Rightarrow x \le \frac{88}{4}$$

$$\Rightarrow x \le 22 \qquad \dots(1)$$

Also, the third piece is at least 5 cm longer than the second piece.

$$2x \ge (x+3)+5$$

$$\Rightarrow 2x \ge x+8$$

$$\Rightarrow 2x-x \ge 8$$

$$\Rightarrow x \ge 8 \qquad \dots(2)$$

From (1) and (2), we obtain

 $8 \le x \le 22$

Thus, the possible length of the shortest board is greater than or equal to 8 cm but less than or equal to 22 cm.

EXERCISE 6.2

Question 1:

Solve the given inequality graphically in two-dimensional plane: x + y < 5

Solution:

The graphical representation of x + y = 5 is given as dotted line in the figure below. This line divides the *xy*-plane in two planes I and II

Select a point (not on the line), which lies in one of the half planes, to determine whether the point satisfies the given inequality or not.

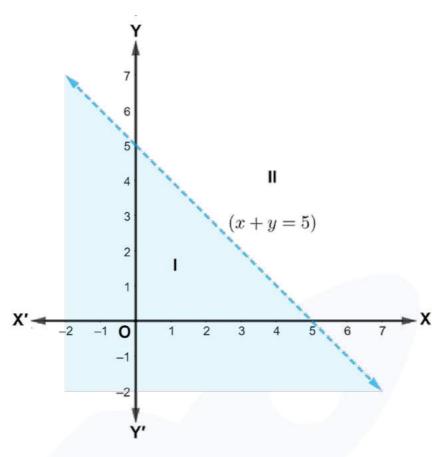
We select the point as (0,0). It is observed that,

0+0<5 or 0<5, which is true

Therefore, half plane II is not the solution region of the given inequality. Also, it is evident that any point on the line does not satisfy the given strict inequality.

Thus, the solution region of the given inequality is the shaded half plane I excluding the points on the line.

This can be represented as follows:



Question 2:

Solve the given inequality graphically in two-dimensional plane: $2x + y \ge 6$.

Solution:

The graphical representation of 2x + y = 6 is given in the figure below. This line divides the *xy*-plane in two half planes, I and II.

Select a point (not on the line), which lies in one of the half planes, to determine whether the point satisfies the given inequality or not.

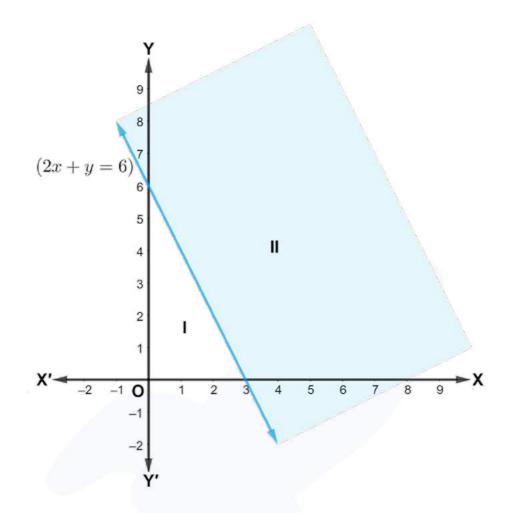
We select the point as (0,0). It is observed that,

 $2(0) + 0 \ge 6$ or $0 \ge 6$, which is false

Therefore, half plane I is not the solution region of the given inequality. Also, it is evident that any point on the line satisfies the given inequality.

Thus, the solution region of the given inequality is the shaded half plane II including the points on the line.

This can be represented as follows:



Question 3:

Solve the given inequality graphically in two-dimensional plane: $3x + 4y \le 12$.

Solution:

The graphical representation of 3x + 4y = 12 is given in the figure below. This line divides the *xy*-plane in two half planes, I and II.

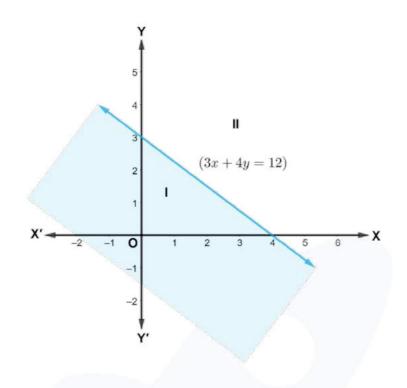
Select a point (not on the line), which lies in one of the half planes, to determine whether the point satisfies the given inequality or not.

We select the point as (0,0). It is observed that,

 $3(0) + 4(0) \le 12$ or $0 \le 12$, which is true

Thus, the solution region of the given inequality is the shaded half plane I, including the points on the line.

This can be represented as follows:



Question 4:

Solve the given inequality graphically in two-dimensional plane: $y + 8 \ge 2x$

Solution:

The graphical representation of y+8=2x is given in the figure below. This line divides the *xy*-plane in two half planes.

Select a point (not on the line), which lies in one of the half planes, to determine whether the point satisfies the given inequality or not.

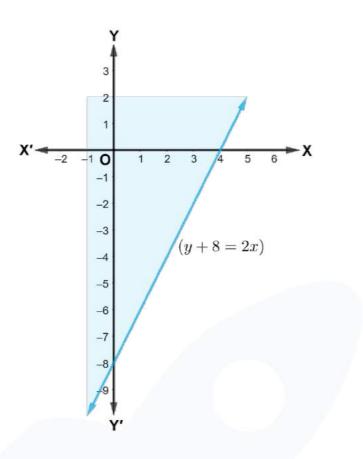
We select the point as (0,0). It is observed that,

 $0+8 \ge 2(0)$ or $8 \ge 0$, which is true

Therefore, lower half plane is not the solution region of the given inequality. Also, it is evident that any point on the line satisfies the given inequality.

Thus, the solution region of the given inequality is the upper half plane containing the points including the line.

The solution region is represented by the shaded region as follows:



Question 5:

Solve the given inequality graphically in two-dimensional plane: $x - y \le 2$

Solution:

The graphical representation of x - y = 2 is given in the figure below. This line divides the *xy*-plane in two half planes.

Select a point (not on the line), which lies in one of the half planes, to determine whether the point satisfies the given inequality or not.

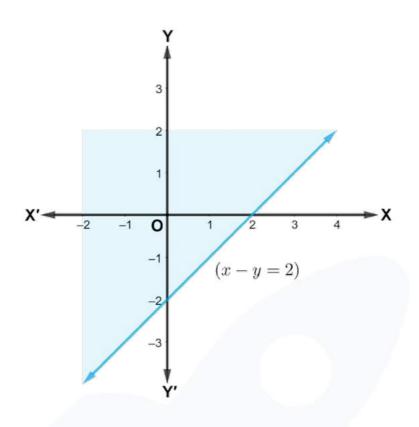
We select the point as (0,0). It is observed that,

 $0-0 \le 2$ or $0 \le 2$, which is true

Therefore, the lower half plane is not the solution region of the given inequality. Also, any point on the line satisfies the given inequality.

Thus, the solution region of the given inequality is the upper half plane containing the points including the line.

The solution region is represented by the shaded region as follows:



Question 6:

Solve the given inequality graphically in two-dimensional plane: 2x-3y > 6

Solution:

The graphical representation of 2x - 3y = 6 is given as dotted line in the figure below. This line divides the *xy*-plane in two half planes.

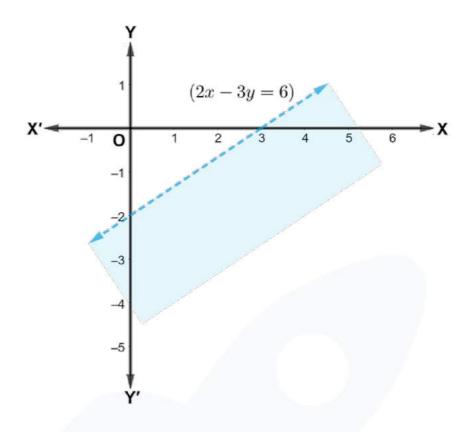
Select a point (not on the line), which lies in one of the half planes, to determine whether the point satisfies the given inequality or not.

We select the point as (0,0). It is observed that, 2(0)-3(0) > 6 or 0 > 6, which is false

Therefore, the upper half plane is not the solution region of the given inequality. Also, any point on the line does not satisfy the given inequality.

Thus, the solution region of the given inequality is the lower half plane that does not contain the points including the line.

The solution region is represented by the shaded region as follows:



Question 7:

Solve the given inequality graphically in two-dimensional plane: $-3x + 2y \ge -6$

Solution:

The graphical representation of -3x + 2y = -6 is given in the figure below. This line divides the *xy*-plane in two half planes.

Select a point (not on the line), which lies in one of the half planes, to determine whether the point satisfies the given inequality or not.

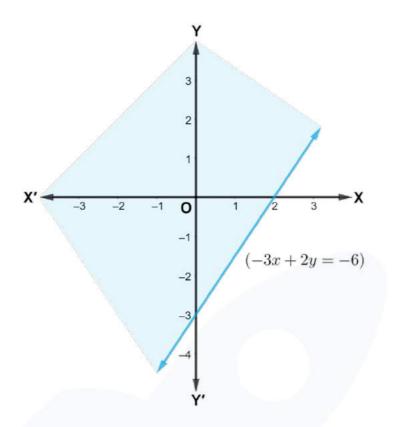
We select the point as (0,0). It is observed that

 $-3(0)+2(0) \ge -6$ or $0 \ge -6$, which is true

Therefore, the lower half plane is not the solution region of the given inequality. Also, it is evident that any point on the line satisfies the given inequality.

Thus, the solution region of the given inequality is the half plane containing the points including the line.

The solution region is represented by the shaded region as follows:



Question 8:

Solve the given inequality graphically in two-dimensional plane: 3y-5x < 30

Solution:

The graphical representation of 3y-5x=30 is given as dotted line in the figure below. This line divides the *xy*-plane in two half planes.

Select a point (not on the line), which lies in one of the half planes, to determine whether the point satisfies the given inequality or not.

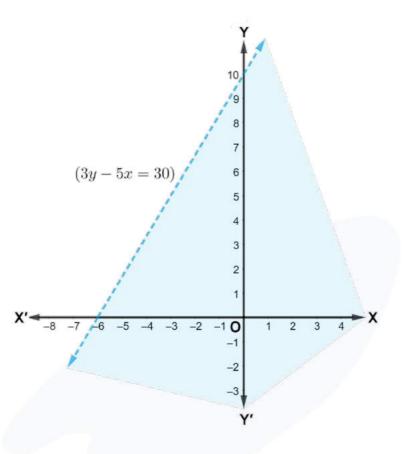
We select the point as (0,0). It is observed that,

 $3(0) - 5(0) < 30_{\text{or}} 0 > 30$, which is true

Therefore, the upper half plane is not the solution region of the given inequality. Also, it is evident that any point on the line does not satisfy the given inequality.

Thus, the solution region of the given inequality is the half plane containing the point excluding the line.

The solution region is represented by the shaded region as follows:



Question 9:

Solve the given inequality graphically in two-dimensional plane: y < -2

Solution:

The graphical representation of y = -2 is given as dotted line the figure below. This line divides the *xy*-plane in two half planes.

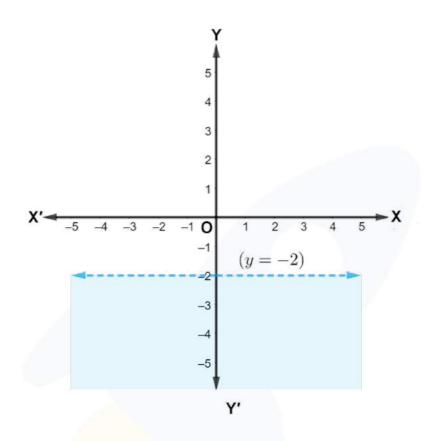
Select a point (not on the line), which lies in one of the half planes, to determine whether the point satisfies the given inequality or not.

We select the point as (0,0). It is observed that, 0 < -2, which is false

Also, it is evident that any point on the line does not satisfy the given inequality.

Hence, every point below the line, y = -2 (excluding all the points on the line), determine the solution of the given inequality.

The solution region is represented by the shaded region as follows:



Question 10:

Solve the given inequality graphically in two-dimensional plane: x > -3

Solution:

The graphical representation of x = -3 is given as dotted line in the figure below. This line divides the *xy*-plane in two half plates.

Select a point (not on the line), which lies in one of the half planes, to determine whether the point satisfies the given inequality or not.

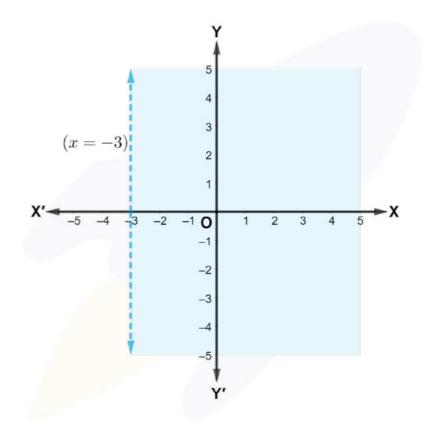
We select the point as (0,0). It is observed that,

0 < -3, which is true

Also, it is evident that any point on the line does not satisfy the given inequality.

Hence, every point on the right side of the line, x = -3 (excluding all the points on the line), determines the solution of the given inequality.

The solution region is represented by the shaded region as follows:



EXERCISE 6.3

Question 1:

Solve the following system of inequality graphically: $x \ge 3, y \ge 2$.

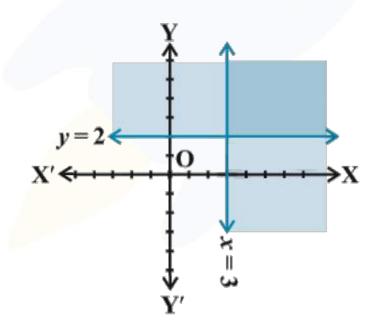
Solution:

 $x \ge 3$...(1) $y \ge 2$...(2)

The graph of the lines, x = 2 and y = 2, are drawn in the figure below.

Inequality $x \ge 3$ represents the region on the right hand side of the line, x = 2 (including the line x = 2), and inequality $y \ge 2$ represents the region above the line, y = 2 (including the line y = 2).

Hence, the solution of the given system of linear inequalities is represented by the common shaded region including the points on the respective lines as follow:



Question 2:

Solve the following system of inequalities graphically: $3x + 2y \le 12, x \ge 1, y \ge 2$.

Solution:

$$3x + 2y \le 12 \qquad ...(1) x \ge 1 \qquad ...(2) y \ge 2 \qquad ...(3)$$

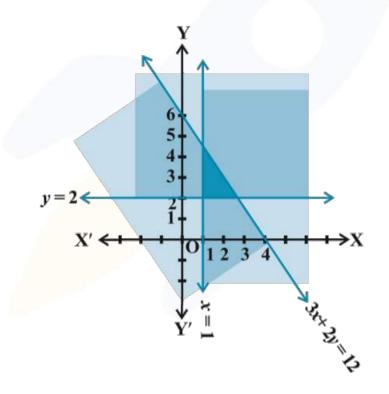
The graphs of the lines, 3x + 2y = 12, x = 1, and y = 2, are drawn in the figure below.

Inequality $3x + 2y \le 12$ represents the region below the line 3x + 2y = 12 (including the line 3x + 2y = 12).

Inequality $x \ge 1$ represents the region on the right hand side of the line, x = 1 (including the line x = 1).

Inequality $y \ge 2$ represents the region above the line, y = 2 (including the line y = 2).

Hence, the solution of the given system of linear inequalities is represented by the common shaded region including the points on the respective lines as follows:



Question 3:

Solve the following system of inequalities graphically: $2x + y \ge 6, 3x + 4y \le 12$.

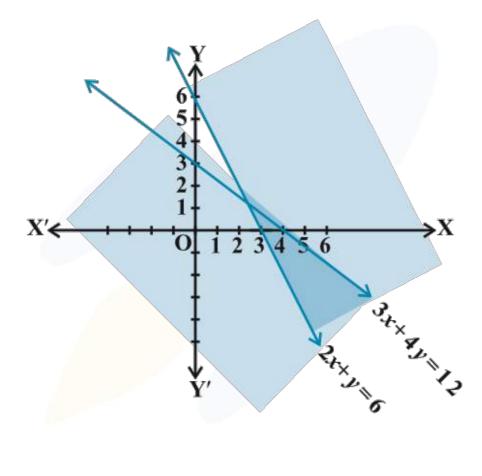
Solution:

$$2x + y \ge 6$$
 ...(1)
 $3x + 4y \le 12$...(2)

The graphs of the lines, 2x + y = 6 and 3x + 4y = 12 are drawn in the figure below. Inequality $2x + y \ge 6$ represents the region below the line, 2x + y = 6 (including the line 2x + y = 6).

Inequality $3x + 4y \le 12$ represents the region on the right hand side of the line, 3x + 4y = 12 (including the line 3x + 4y = 12).

Hence, the solution of the given system of linear inequalities is represented by the common shaded region including the points on the respective lines as follows:



Question 4:

Solve the following system of inequalities graphically: $x + y \ge 4$, 2x - y < 0.

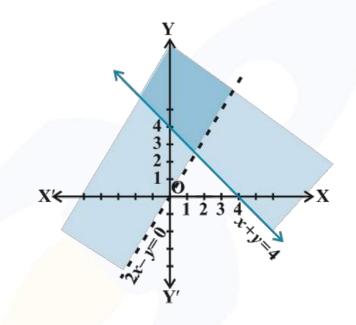
Solution:

$$x + y \ge 4$$
 ...(1)
 $2x - y < 0$...(2)

The graphs of the lines, x + y = 4 and 2x - y = 0 are drawn in the figure below. Inequality $x + y \ge 4$ represents the region above the line, x + y = 4 (including the line x + y = 4).

It is observed that (1,0) satisfies the inequality, 2x - y < 0. Since, 2(1) - 0 = 2 < 0Therefore, Inequality 2x - y < 0 represents the half plane corresponding to the line, 2x - y = 0, containing the point (1,0) (excluding the line 2x - y < 0).

Hence, the solution of the given system of linear inequalities is represented by the common shaded region including the points on the line x + y = 4 and excluding the points on line 2x - y = 0 as follows.



Question 5:

Solve the following system of inequalities graphically: 2x - y > 1, x - 2y < -1

Solution:

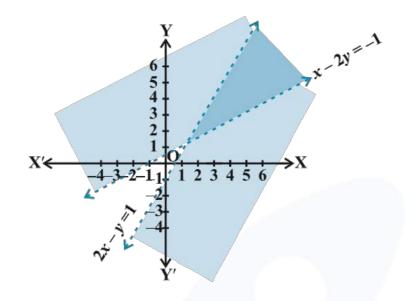
$$2x - y > 1$$
 ...(1)
 $x - 2y < -1$...(2)

The graphs of the lines, 2x - y = 1 and x - 2y = -1 are drawn in the figure below.

Inequality 2x - y > 1 represents the region below the line, 2x - y = 1 (excluding the line 2x - y = 1).

Inequality x-2y < -1 represents the region on the right hand side of the line, x-2y = -1 (excluding the line x-2y = -1).

Hence, the solution of the given system of linear inequalities is represented by the common shaded region excluding the points on the respective lines as follows:



Question 6:

Solve the following system of inequalities graphically: $x + y \le 6, x + y \ge 4$

Solution:

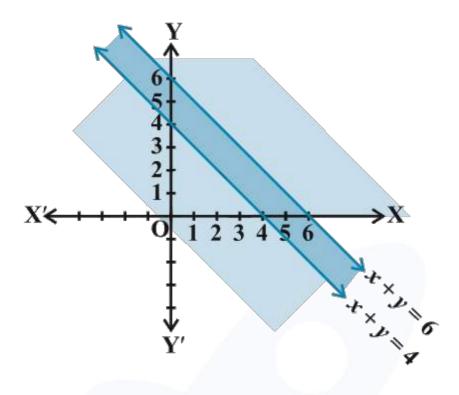
 $x + y \le 6$...(1) $x + y \ge 4$...(2)

The graphs of the lines, x + y = 6 and x + y = 4 are drawn in the figure below.

Inequality $x + y \le 6$ represents the region below the line, x + y = 6 (including the line x + y = 6).

Inequality $x + y \ge 4$ represents the region on the right hand side of the line, x + y = 4 (including the line x + y = 4).

Hence, the solution of the given system of linear inequalities is represented by the common shaded region including the points on the respective lines as follows:



Question 7:

Solve the following system of inequalities graphically: $2x + y \ge 8, x + 2y \ge 10$

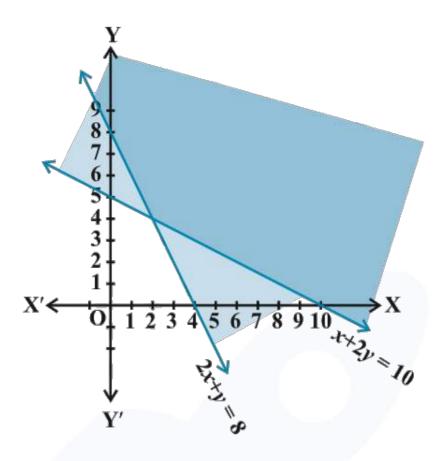
Solution:

$2x + y \ge 8$	(1)
$x + 2y \leq 10$	(2)

The graphs of the lines, 2x + y = 8 and x + 2y = 10 are drawn in the figure below.

Inequality $2x + y \ge 8$ represents the region below the line, 2x + y = 8 (including the line). Inequality $x + 2y \le 10$ represents the region on the right hand side of the line, x + 2y = 10 (including the line).

Hence, the solution of the given system of linear inequalities is represented by the common shaded region including the points on the respective lines as follows:



Question 8:

Solve the following system of the inequalities graphically: $x + y \le 9$, y > x, $x \ge 0$.

Solution:

$x + y \le 9$	(1)
y > x	(2)
$x \ge 0$	(3)

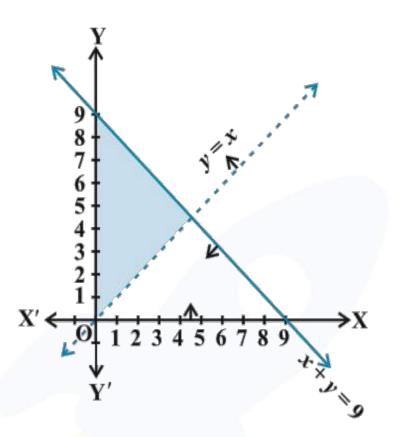
The graph of the lines, x + y = 9 and y = x, are drawn in the figure below.

Inequality $x + y \le 9$ represents the region below the line, x + y = 9 (including the line x + y = 9).

It is observed that (0,1) satisfies the inequality, y = x. Since, 1 > 0. Therefore, inequality y > x represents the half plane, corresponding to the line, y = x, containing the point (0,1), (excluding the line y = x).

Inequality $x \ge 0$ represents the region on the right hand side of the line, x = 0 or y-axis (including the y-axis).

Hence, the solution of the given system of linear inequalities is represented by the common shaded region including the points on the lines, x + y = 9 and x = 0, but excluding the points on line y = x as follows:



Question 9:

Solve the following system of inequalities graphically: $5x + 4y \le 20, x \ge 1, y \ge 2$

Solution:

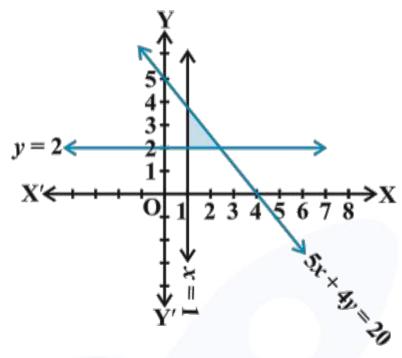
$5x + 4y \le 20$	(1)
$x \ge 1$	(2)
$y \ge 2$	(3)

The graph of the lines, 5x + 4y = 20, x = 1 and y = 2, are drawn in the figure below.

Inequality $5x + 4y \le 20$ represents the region below the line, 5x + 4y = 20 (including the line 5x + 4y = 20).

Inequality $x \ge 1$ represents the region below the line, x = 1 (including the line x = 1). Inequality $y \ge 2$ represents the region below the line, y = 2 (including the line y = 2).

Hence, the solution of the given system of linear inequalities is represented by the common shaded region including the points on the respective lines as follows:



Question 10:

Solve the following system of inequalities graphically: $3x + 4y \le 60, x + 3y \le 30, x \ge 0, y \ge 0$

Solution:

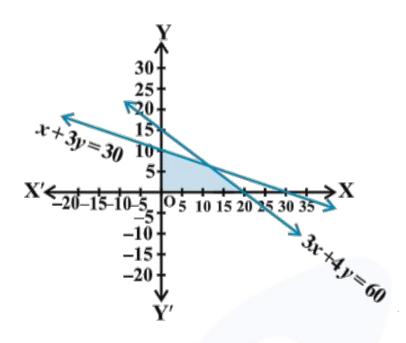
$3x + 4y \le 60$	(1)
$x + 3y \le 30$	(2)

The graph of the lines, 3x + 4y = 60 and x + 3y = 30, are drawn in the figure below.

Inequality $3x + 4y \le 60$ represents the region below the line, 3x + 4y = 60 (including the line 3x + 4y = 60).

Inequality $x + 3y \le 30$ represents the region the line, x + 3y = 30 (including the line x + 3y = 30).

Since $x \ge 0$ and $y \ge 0$ every point in the common shaded region in the first quadrant including the points on the respective line and the axes represents the solution of the given system of linear inequalities as follows:



Question 11:

Solve the following system of inequalities graphically: $2x + y \ge 4, x + y \le 3, 2x - 3y \le 6$

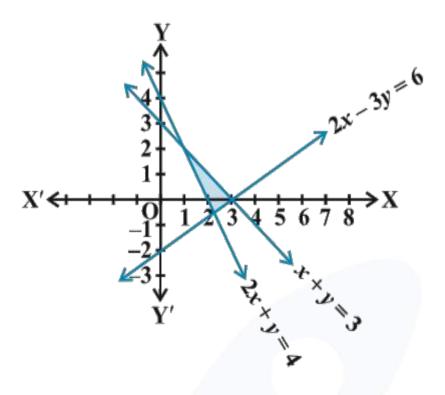
Solution:

$2x + y \ge 4$	(1)
$x + y \le 3$	(2)
$2x - 3y \le 6$	(3)

The graph of the lines, 2x + y = 4, x + y = 3 and 2x - 3y = 6, are drawn in the figure below.

Inequality $2x + y \ge 4$ represents the region above the line, 2x + y = 4 (including the line). Inequality $x + y \le 3$ represents the region below the line, x + y = 3 (including the line). Inequality $2x - 3y \le 6$ represents the region above the line, 2x - 3y = 6 (including the line).

Hence, the solution of the given system of linear inequalities is represented by the common shaded region including the points on the respective lines as follows:



Question 12:

Solve the following system of inequalities graphically: $x-2y \le 3, 3x+4y \ge 12, x \ge 0, y \ge 1$

Solution:

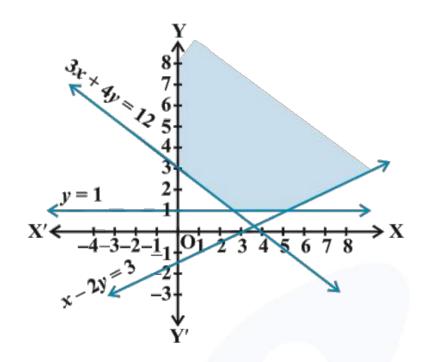
$x - 2y \le 3$	(1)
$3x + 4y \ge 12$	(2)
$y \ge 1$	(3)
$x \ge 0$	(4)

The graphs of the lines, x-2y=3, 3x+4y=12 and y=1 are drawn in the figure below.

Inequality $x - 2y \le 3$ represents the region above the line, x - 2y = 3 (including the line). Inequality $3x + 4y \ge 12$ represents region above the line, 3x + 4y = 12 (including the line). Inequality $y \ge 1$ represents the region above the line, y = 1 (including the line). Inequality $x \ge 0$ represents the region on the right and side of *y*-axis (including *y*-axis).

Hence, the solution of the given system of linear inequalities is represented by the common shaded region including the points on the respective lines and *y*-axis as follows:

WWW.CUEMATH.COM



Question 13:

Solve the following system of inequalities graphically: $4x + 3y \le 60, y \ge 2x, x \ge 3, x, y \ge 0.$

Solution:

$4x + 3y \le 60$	(1)
$y \ge 2x$	(2)
$x \ge 3$	(3)

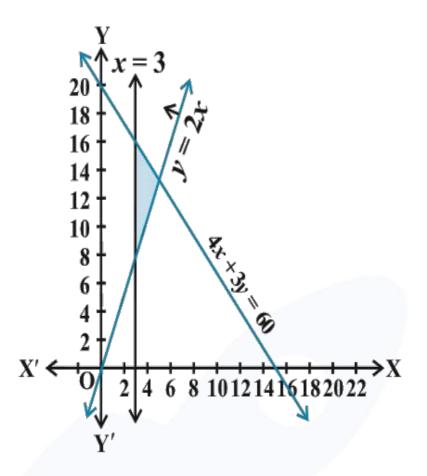
The graph of the lines, 4x + 3y = 60, y = 2x, and x = 3, are drawn in the figure below.

Inequality $4x + 3y \le 60$ represents the region below the line, 4x + 3y = 60 (including the line 4x + 3y = 60).

Inequality $y \ge 2x$ represents the region above the line, y = 2x (including the line y = 2x). Inequality $x \ge 3$ represents the region on the right hand side of the line, x = 3 (including the line x = 3).

Hence, the solution of the given system of linear inequalities is represented by the common shaded region including the points on the respective lines as follows:

WWW.CUEMATH.COM



Question 14:

Solve the following system of inequalities graphically: $3x + 2y \le 150, x + 4y \le 80, x \le 15, y \ge 0, x \ge 0$

Solution:

$3x + 2y \leq 150$	(1)
$x + 4y \le 80$	(2)
$x \leq 15$	(3)

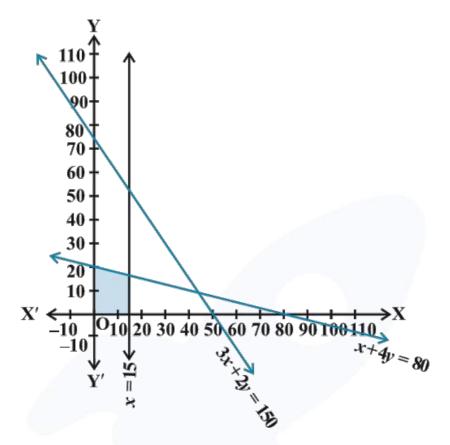
The graph of the lines 3x + 2y = 150, x + 4y = 80 and x = 15, are drawn in the figure below.

Inequality $3x + 2y \le 150$ represents the region below the line, 3x + 2y = 150 (including the line 3x + 2y = 150).

Inequality $x + 4y \le 80$ represents the region below the line, x + 4y = 80 (including the line x + 4y = 80).

Inequality $x \le 15$ represents the region on the left hand side the line, x = 15 (including the line x = 15).

Since $x \ge 0$ and $y \ge 0$, every point in the common shaded region in the first quadrant including the points on the respective lines and the axes represents the solution of the given system of linear inequalities as follows:



Question 15:

Solve the following system of inequalities graphically: $x+2y \le 10, x+y \ge 1, x-y \le 0, x \ge 0, y \ge 0$

Solution:

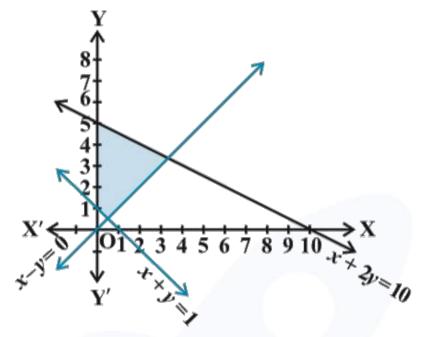
$x + 2y \le 10$	(1)
$x + y \ge 1$	(2)
$x - y \le 0$	(3)

The graph of the lines, x + 2y = 10, x + y = 1 and x - y = 0 are drawn in the figure below.

Inequality $x + 2y \le 10$ represents the region below the line, x + 2y = 10 (including the line x + 2y = 10).

Inequality $x + y \ge 1$ represents the region above the line, x + y = 1 (including the line x + y = 1). Inequality (3) represents the region above the line, x - y = 0 (including the line x - y = 0).

Since $x \ge 0$ and $y \ge 0$, every point in the common shaded region in the first quadrant including the points on the respective lines and the axes represents the solution of the given system of linear inequalities as follows:



MISCELLANEOUS EXERCISE

Question 1:

Solve the inequality $2 \le 3x - 4 \le 5$

Solution:

 $2 \le 3x - 4 \le 5$ $\Rightarrow 2 + 4 \le 3x - 4 + 4 \le 5 + 4$ $\Rightarrow 6 \le 3x \le 9$ $\Rightarrow 2 \le x \le 3$

Thus, all the real numbers, x, which are greater than or equal to 2 but less than or equal to 3, are the solutions of the given inequality.

The solution set for the given inequality is [2,3].

Question 2:

Solve the inequality $6 \le -3(2x-4) < 12$

Solution:

 $6 \le -3(2x-4) < 12$ $\Rightarrow 2 \le -(2x-4) < 4$ $\Rightarrow -2 \ge 2x - 4 > -4$ $\Rightarrow 4 - 2 \ge 2x > 4 - 4$ $\Rightarrow 2 \ge 2x > 0$ $\Rightarrow 1 \ge x > 0$ $\Rightarrow 0 < x \le 1$

Thus, the solution set for the given inequality is (0,1].

Question 3:

Solve the inequality $-3 \le 4 - \frac{7x}{2} \le 18$

Solution:

$$-3 \le 4 - \frac{7x}{2} \le 18$$

$$\Rightarrow -3 - 4 \le -\frac{7x}{2} \le 18 - 4$$

$$\Rightarrow -7 \le -\frac{7x}{2} \le 14$$

$$\Rightarrow 7 \ge \frac{7x}{2} \ge -14$$

$$\Rightarrow 1 \ge \frac{x}{2} \ge -2$$

$$\Rightarrow 2 \ge x \ge -4$$

$$\Rightarrow -4 \le x \le 2$$

Thus, the solution set for the given inequality is [-4,2]. Question 4:

Solve the inequality $-15 < \frac{3(x-2)}{5} \le 0$

Solution:

$$-15 < \frac{3(x-2)}{5} \le 0$$
$$\Rightarrow -75 < 3(x-2) \le 0$$
$$\Rightarrow -25 < x-2 \le 0$$
$$\Rightarrow -25 + 2 < x \le 2$$
$$\Rightarrow -23 < x \le 2$$

Thus, the solution set for the given inequality is (-23,2]

Question5:

Solve the inequality $-12 < 4 - \frac{3x}{-5} \le 2$

Solution:

$$-12 < 4 - \frac{3x}{-5} \le 2$$
$$\Rightarrow -12 - 4 < \frac{3x}{5} \le 2 - 4$$
$$\Rightarrow -16 < \frac{3x}{5} \le -2$$
$$\Rightarrow -80 < 3x \le -10$$
$$\Rightarrow \frac{-80}{3} < x \le \frac{-10}{3}$$

Thus, the solution set for the given inequality is $\left(\frac{-80}{3}, \frac{-10}{3}\right]$. Question 6:

Solve the inequality $7 \le \frac{(3x+11)}{2} \le 11$

Solution:

$$7 \le \frac{(3x+11)}{2} \le 11$$

$$\Rightarrow 14 \le 3x + 11 \le 22$$

$$\Rightarrow 14 - 11 \le 3x \le 22 - 11$$

$$\Rightarrow 3 \le 3x \le 11$$

$$\Rightarrow 1 \le x \le \frac{11}{3}$$

Thus, the solution set for the given inequality is $\begin{bmatrix} 1, \frac{11}{3} \end{bmatrix}$.

Question 7:

Solve the inequalities and represent the solution graphically on number line. 5x+1 > -24, 5x-1 < 24

Solution:

5x + 1 > -24 $\Rightarrow 5x > -25$ $\Rightarrow x > -5 \qquad \dots(1)$ 5x - 1 < 24 $\Rightarrow 5x < 25$ $\Rightarrow x < 5 \qquad \dots(2)$

From (1) and (2), we get, -5 < x < 5

Hence, it can be concluded that the solution set for the given system of inequalities is (-5,5).

The solution of the given system of inequalities can be represented on number line as

$$-\infty \underbrace{(-5,5)}_{-6 -5 -4 -3 -2 -1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9} \infty$$

Question 8:

Solve the inequalities and represent the solution graphically on number line: 2(x-1) < x+5, 3(x+2) > 2-x

Solution:

2(x-1) < x+5 $\Rightarrow 2x-2 < x+5$ $\Rightarrow 2x-x < 5+2$ $\Rightarrow x < 7 \qquad \dots(1)$

3(x+2) > 2-x $\Rightarrow 3x+6 > 2-x$ $\Rightarrow 3x+x > 2-6$ $\Rightarrow 4x > -4$ $\Rightarrow x > -1 \qquad \dots(2)$

From (1) and (2), we get, -1 < x < 7

Hence, it can be concluded that the solution set for the given system of inequalities is (-1,7). The solution of the given system of inequalities can be represented on number line as

Question 9:

Solve the inequalities and represent the solution graphically on number line: 3x-7 > 2(x-6), 6-x > 11-2x

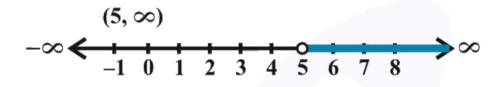
Solution:

3x - 7 > 2(x - 6) $\Rightarrow 3x - 7 > 2x - 12$ $\Rightarrow 3x - 2x > -12 + 7$ $\Rightarrow x > -5 \qquad \dots(1)$

6 - x > 11 - 2x $\Rightarrow -x + 2x > 11 - 6$ $\Rightarrow x > 5 \qquad \dots (2)$

From (1) and (2), we get, -5 < x > 5

Hence, it can be concluded that the solution set for the given system of inequalities is $(5,\infty)$. The solution of the given system of inequalities can be represented on number line as



Question 10:

Solve the inequalities and represent the solution graphically on number line:

 $5(2x-7) - 3(2x+3) \le 0, 2x+19 \le 6x+47$ Solution: $5(2x-7) - 3(2x+3) \le 0$ $\Rightarrow 10x - 35 - 6x - 9 \le 0$ $\Rightarrow 4x - 44 \le 0$ $\Rightarrow 4x \le 44$ $\Rightarrow x \le 11 \qquad \dots(1)$ $2x+19 \le 6x+47$ $\Rightarrow 19-47 \le 6x-2x$ $\Rightarrow -28 \le 4x$ $\Rightarrow -7 \le x \qquad \dots(2)$

From (1) and (2), we get, $-7 \le x \le 11$

Hence, it can be concluded that the solution set for the given system of inequalities is [-7,11].

The solution of the given system of inequalities can be represented on number line as

 $-\infty \underbrace{[-7,11]}_{-7 -6 -5 -4 -3 -2 -1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13} \infty$

Question 11:

A solution is to be kept between $68^{\circ}F$ and $77^{\circ}F$. What is the range in temperature in degree Celsius (C) if the Celsius / Fahrenheit (F) conversion formula is given by $F = \frac{9}{5}C + 32$?

Solution:

Since the solution is to be kept between $68^{\circ}F$ and $77^{\circ}F$, $68^{\circ} < F < 77^{\circ}$

Putting $F = \frac{9}{5}C + 32$, we obtain $68 < \frac{9}{5}C + 32 < 77$ $\Rightarrow 68 - 32 < \frac{9}{5}C < 77 - 32$ $\Rightarrow 36 < \frac{9}{5}C < 45$ $\Rightarrow 36 \times \frac{5}{9} < C < 45 \times \frac{5}{9}$ $\Rightarrow 20 < C < 25$

Thus, the required range of temperature in degree Celsius is between $20^{\circ}C$ and $25^{\circ}C$.

Question 12:

A solution of 8% boric acid is to be diluted by adding a 2% boric acid solution to it. The resulting mixture is to be more than 4% but less than 6% boric acid. If we have 640 litres of the 8% solution, how many litres of the 2% solution will have to be added?

Solution:

Let *x* litres of 2% boric acid solution is required to be added.

Then, total mixture =(x+640) litres This resulting mixture is to be more than 4% but less than 6% boric acid.

Therefore, 2%x + 8% of 640 > 4% of (x + 640) and 2%x + 8% of 640 < 6% of (x + 640)

$$2\%x + 8\% \text{ of } 640 > 4\% \text{ of } (x + 640)$$

$$\Rightarrow \frac{2}{100}x + \frac{8}{100}(640) > \frac{4}{100}(x + 640)$$

$$\Rightarrow 2x + 5120 > 4x + 2560$$

$$\Rightarrow 5120 - 2560 > 4x - 2x$$

$$\Rightarrow 2560 > 2x$$

$$\Rightarrow x < 1280 \qquad \dots(1)$$

2%x + 8% of 640 < 6% of (x + 640) $\Rightarrow \frac{2}{100}x + \frac{8}{100}(640) < \frac{6}{100}(x + 640)$ $\Rightarrow 2x + 5120 < 6x + 2560$ $\Rightarrow 5120 - 2560 < 6x - 2x$ $\Rightarrow 2560 < 3x$ $\Rightarrow x > 320 \qquad \dots (2)$

From (1) and (2), we get, 320 < *x* < 1280

Thus, the number of litres of 2% of boric acid solution that is to be added will have to be more than 320 litres but less than 1280 litres.

Question 13:

How many litres of water will have to be added to 1125 litres of the 45% solution of acid so that the resulting mixture will contain more than 25% but less than 30% acid content?

Solution:

Let *x* litres of water is required to be added.

Then, total mixture = (1125 + x) litres

It is evident that the amount of acid contained in the resulting mixture is 45% of 1125 litres. This resulting mixture will contain more than 25% but less than 30% acid content.

Therefore, 30% of (1125 + x) > 45% of 1125 and 25% of (1125 + x) < 45% of 1125

$$30\% \text{ of } (1125 + x) > 45\% \text{ of } 1125$$

$$\Rightarrow \frac{30}{100} (1125 + x) > \frac{45}{100} \times 1125$$

$$\Rightarrow 30 (1125 + x) > 45 \times 1125$$

$$\Rightarrow 30 \times 1125 + 30x > 45 \times 1125$$

$$\Rightarrow 30x > 45 \times 1125 - 30 \times 1125$$

$$\Rightarrow 30x > (45 - 30) \times 1125$$

$$\Rightarrow x > \frac{15 \times 1125}{30}$$

$$\Rightarrow x > 562.5 \qquad \dots (1)$$

$$25\% \text{ of } (1125 + x) < 45\% \text{ of } 1125$$

$$\Rightarrow \frac{25}{100} (1125 + x) < \frac{45}{100} \times 1125$$

$$\Rightarrow 25(1125 + x) < 45 \times 1125$$

$$\Rightarrow 25 \times 1125 + 25x < 45 \times 1125$$

$$\Rightarrow 25x < 45 \times 1125 - 25 \times 1125$$

$$\Rightarrow 25x < (45 - 25) \times 1125$$

$$\Rightarrow x < \frac{20 \times 1125}{25}$$

$$\Rightarrow x < 900 \dots (2)$$

From (1) and (2), we get, 562.5 < x < 900

Thus, the required number of litres of water that is to be added will have to be more than 562.5 litres but less than 900 litres.

Question 14:

IQ of a person is given by the formula

$$IQ = \frac{MA}{CA} \times 100$$

where MA is mental age and CA is chronological age. If $80 \le IQ \le 140$ for a group of 12 years old children, find the range of their mental age.

Solution:

It is given that for a group of 12 years old children, $80 \le IQ \le 140$...(1)

For a group of 12 years old children, CA = 12 years

Therefore,
$$IQ = \frac{MA}{12} \times 100$$

Putting this value of IQ in (1), we obtain

$$80 \le \frac{MA}{12} \times 100 \le 140$$
$$\Rightarrow 80 \times \frac{12}{100} \le MA \le 140 \times \frac{12}{100}$$
$$\Rightarrow 9.6 \le MA \le 16.8$$

Thus, the range of mental age of the group of 12 years old children is $9.6 \le MA \le 16.8$.

When you learn math in an interesting way, you never forget.

25 Million

Math classes & counting

100K+

Students learning Math the right way

20+ Countries

Present across USA, UK, Singapore, India, UAE & more.

Why choose Cuemath?

"Cuemath is a valuable addition to our family. We love solving puzzle cards. My daughter is now visualizing maths and solving problems effectively!" "Cuemath is great because my son has a one-on-one interaction with the teacher. The instructor has developed his confidence and I can see progress in his work. One-on-one interaction is perfect and a great bonus." "I appreciate the effort that miss Nitya puts in to help my daughter understand the best methods and to explain why she got a problem incorrect. She is extremely patient and generous with Miranda."

- Gary Schwartz

- Kirk Riley

- Barbara Cabrera

Get the Cuemath advantage

Book a FREE trial class