

Come experience the Cuemath methodology and ensure your child stays ahead at math this summer.

Adaptive

Platform

Interactive Visual

Simulations

Personalized Attention

For Grades 1 - 10

LIVE online classes by trained and certified experts.

Get the Cuemath advantage

Book a FREE trial class

NCERT Solutions Class 12 Maths Chapter 1 Relations and Functions

Question 1:

Determine whether each of the following relations are reflexive, symmetric and transitive.

(i) Relation R in the set $A = \{1, 2, 3, \dots, 13, 14\}$ defined as

$$R = \{(x, y) : 3x - y = 0\}$$

- (ii) Relation R in the set of N natural numbers defined as $R = \{(x, y) : y = x + 5 \text{ and } x < 4\}$
- (iii) Relation R in the set $A = \{1, 2, 3, 4, 5, 6\}$ defined as
 - $R = \{(x, y) : y \text{ is divisible by } x\}$
- (iv) Relation R in the set of Z integers defined as $R = \{(x, y) : x - y \text{ is an integer}\}$
- (v) Relation R in the set of human beings in a town at a particular time given by
 - (a) $R = \{(x, y) : x \text{ and } y \text{ work at the same place}\}$
 - (b) $R = \{(x, y) : x \text{ and } y \text{ live in the same locality} \}$
 - (c) $R = \{(x, y) : x \text{ is exactly 7cm taller than } y\}$
 - (d) $R = \{(x, y) : x \text{ is wife of } y\}$
 - (e) $R = \{(x, y) : x \text{ is father of } y\}$

Solution:

(i) $R = \{(1,3), (2,6), (3,9), (4,12)\}$

R is not reflexive because (1,1), (2,2)... and $(14,14) \notin R$. R is not symmetric because $(1,3) \in R$, but $(3,1) \notin R$.[since $3(3) \neq 0$]. R is not transitive because $(1,3), (3,9) \in R$, but $(1,9) \notin R$.[$3(1)-9 \neq 0$]. Hence, R is neither reflexive nor symmetric nor transitive.

(ii) $R = \{(1,6), (2,7), (3,8)\}$

R is not reflexive because $(1,1) \notin R$.

R is not symmetric because $(1,6) \in R$ but $(6,1) \notin R$. R is not transitive because there isn't any ordered pair in R such that $(x,y), (y,z) \in R$, so $(x,z) \notin R$.

Hence, R is neither reflexive nor symmetric nor transitive.

(iii) $R = \{(x, y) : y \text{ is divisible by } x\}$

We know that any number other than 0 is divisible by itself. Thus, $(x, x) \in R$

So, R is reflexive.

(2,4) ∈ R [because 4 is divisible by 2]
But (4,2) ∉ R [since 2 is not divisible by 4]
So, R is not symmetric.
Let (x, y) and (y, z) ∈ R. So, y is divisible by x and z is divisible by y.
So, z is divisible by x ⇒ (x, z) ∈ R
So, R is transitive.
So, R is reflexive and transitive but not symmetric.

(iv)
$$R = \{(x, y) : x - y \text{ is an integer}\}$$

For $x \in Z$, $(x,x) \notin R$ because x-x=0 is an integer. So, R is reflexive. For, $x, y \in Z$, if $x, y \in R$, then x-y is an integer $\Rightarrow (y-x)$ is an integer. So, $(y,x) \in R$ So, R is symmetric. Let (x, y) and $(y, z) \in R$, where $x, y, z \in Z$. $\Rightarrow (x-y)$ and (y-z) are integers. $\Rightarrow x-z=(x-y)+(y-z)$ is an integer. So, R is transitive.

So, R is reflexive, symmetric and transitive.

(v)

a) $R = \{(x, y) : x \text{ and } y \text{ work at the same place} \}$

R is reflexive because $(x, x) \in R$

R is symmetric because,

If $(x, y) \in R$, then x and y work at the same place and y and x also work at the same place. $(y, x) \in R$.

R is transitive because,

Let $(x, y), (y, z) \in R$

x and Y work at the same place and Y and z work at the same place.

Then, x and z also works at the same place. $(x, z) \in R$. Hence, R is reflexive, symmetric and transitive.

b) R = {(x, y) : x and y live in the same locality}
R is reflexive because (x, x) ∈ R
R is symmetric because,
If (x, y) ∈ R, then x and y live in the same locality and y and x also live in the same locality (y, x) ∈ R.
R is transitive because,

Let $(x, y), (y, z) \in R$

x and Y live in the same locality and Y and z live in the same locality.

Then x and z also live in the same locality. $(x, z) \in R$. Hence, R is reflexive, symmetric and transitive.

c) $R = \{(x, y) : x \text{ is exactly 7cm taller than } y\}$ R is not reflexive because $(x, x) \notin R$. R is not symmetric because, If $(x, y) \in R$, then x is exactly 7cm taller than y and y is clearly not taller than x $(y, x) \notin R$.

R is not transitive because,

Let $(x, y), (y, z) \in R$

x is exactly 7cm taller than Y and Y is exactly 7cm taller than z.

Then x is exactly 14cm taller than z. $(x, z) \notin R$

Hence, R is neither reflexive nor symmetric nor transitive.

d) $R = \{(x, y) : x \text{ is wife of } y\}$

R is not reflexive because $(x, x) \notin R$

R is not symmetric because,

Let $(x, y) \in R$, x is the wife of y and y is not the wife of x. $(y, x) \notin R$. R is not transitive because,

```
Let (x, y), (y, z) \in \mathbb{R}
```

x is wife of Y and Y is wife of z, which is not possible.

 $(x,z) \notin R$

Hence, R is neither reflexive nor symmetric nor transitive.

e) $R = \{(x, y) : x \text{ is father of } y\}$

R is not reflexive because $(x, x) \notin R$.

R is not symmetric because,

Let $(x, y) \in R$, x is the father of y and y is not the father of x. $(y, x) \notin R$. R is not transitive because,

Let $(x, y), (y, z) \in \mathbb{R}$

x is father of Y and Y is father of z, x is not father of z. $(x,z) \notin R$. Hence, R is neither reflexive nor symmetric nor transitive.

Question 2:

Show that the relation R in the set R of real numbers, defined as $R = \{(a,b) : a \le b^2\}$ is neither reflexive nor symmetric nor transitive.

Solution:

$$R = \left\{ (a,b) : a \le b^2 \right\}$$
$$\left(\frac{1}{2}, \frac{1}{2}\right) \notin R \quad \text{because} \quad \frac{1}{2} > \left(\frac{1}{2}\right)^2$$

 \therefore R is not reflexive.

 $(1,4) \in R$ as 1 < 4. But 4 is not less than 1^2 . $(4,1) \notin R$

 \therefore R is not symmetric.

 $(3,2)(2,1.5) \in R$ [Because $3 < 2^2 = 4$ and $2 < (1.5)^2 = 2.25$] $3 > (1.5)^2 = 2.25$ $\therefore (3,1.5) \notin R$

 \therefore R is not transitive.

R is neither reflective nor symmetric nor transitive.

Question 3:

Check whether the relation R defined in the set $\{1,2,3,4,5,6\}$ as $R = \{(a,b): b = a+1\}$ is reflexive, symmetric or transitive.

Solution:

 $A = \{1, 2, 3, 4, 5, 6\}$ $R = \{(a, b) : b = a + 1\}$ $R = \{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)\}$

 $(a,a) \notin R, a \in A$ $(1,1), (2,2), (3,3), (4,4), (5,5) \notin R$ \therefore R is not reflexive.

 $(1,2) \in R$, but $(2,1) \notin R$

 \therefore R is not symmetric.

 $(1,2),(2,3) \in R$ $(1,3) \notin R$ \therefore R is not transitive.

R is neither reflective nor symmetric nor transitive.

Question 4:

Show that the relation R in R defined as $R = \{(a,b): a \le b\}$ is reflexive and transitive, but not symmetric.

Solution:

 $R = \{(a,b) : a \le b\}$ $(a,a) \in R$ $\therefore \text{ R is reflexive.}$

 $(2,4) \in R \text{ (as } 2 < 4)$ $(4,2) \notin R \text{ (as } 4>2)$ \therefore R is not symmetric.

 $(a,b), (b,c) \in R$ $a \le b$ and $b \le c$ $\Rightarrow a \le c$ $\Rightarrow (a,c) \in R$ \therefore R is transitive. R is reflexive and transitive but not symmetric.

Question 5:

Check whether the relation R in R defined as $R = \{(a,b): a \le b^3\}$ is reflexive, symmetric or transitive.

Solution:

 $R = \left\{ \left(a, b\right) : a \le b^3 \right\}$ $\left(\frac{1}{2}, \frac{1}{2}\right) \notin R, \text{ since } \frac{1}{2} > \left(\frac{1}{2}\right)^3$ $\therefore \text{ R is not reflexive.}$

 $(1,2) \in R(as \ 1 < 2^3 = 8)$ $(2,1) \notin R(as \ 2^3 > 1 = 8)$ \therefore R is not symmetric.

$$\left(3,\frac{3}{2}\right), \left(\frac{3}{2},\frac{6}{5}\right) \in R$$
, since $3 < \left(\frac{3}{2}\right)^3$ and $\frac{2}{3} < \left(\frac{6}{2}\right)^3$
 $\left(3,\frac{6}{5}\right) \notin R$ $3 > \left(\frac{6}{5}\right)^3$
 \therefore R is not transitive.

R is neither reflexive nor symmetric nor transitive.

Question 6:

Show that the relation R in the set $\{1,2,3\}$ given by $R = \{(1,2),(2,1)\}$ is symmetric but neither reflexive nor transitive.

Solution:

 $A = \{1, 2, 3\}$ $R = \{(1, 2), (2, 1)\}$ $(1, 1), (2, 2), (3, 3) \notin R$ $\therefore \text{ R is not reflexive.}$ $(1, 2) \in R \text{ and } (2, 1) \in R$ $\therefore \text{ R is symmetric.}$

 $(1,2) \in R \text{ and } (2,1) \in R$ $(1,1) \in R$ \therefore R is not transitive.

R is symmetric, but not reflexive or transitive.

Question 7:

Show that the relation R in the set A of all books in a library of a college, given by $R = \{(x, y) : x \text{ and } y \text{ have same number of pages}\}$ is an equivalence relation.

Solution:

 $R = \{(x, y) : x \text{ and } y \text{ have same number of pages} \}$

R is reflexive since $(x, x) \in R$ as x and x have same number of pages.

 \therefore R is reflexive.

 $(x, y) \in R$

x and *y* have same number of pages and *y* and *x* have same number of pages $(y, x) \in R$ \therefore R is symmetric.

 $(x, y) \in R, (y, z) \in R$

x and y have same number of pages, y and z have same number of pages. Then x and z have same number of pages.

 $(x,z) \in R$

 \therefore R is transitive.

R is an equivalence relation.

Question 8:

Show that the relation R in the set $A = \{1, 2, 3, 4, 5\}$ given by $R = \{(a, b) : |a - b| \text{ is even}\}$ is an equivalence relation. Show that all the elements of $\{1, 3, 5\}$ are related to each other and all the elements of $\{2, 4\}$ are related to each other. But no element of $\{1, 3, 5\}$ is related to any element of $\{2, 4\}$.

Solution:

 $a \in A$ |a-a| = 0 (which is even)

 \therefore R is reflective.

 $(a,b) \in R$ $\Rightarrow |a-b| \text{ [is even]}$ $\Rightarrow |-(a-b)| = |b-a| \text{ [is even]}$ $(b,a) \in R$ \therefore R is symmetric.

 $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow |a-b|_{is \text{ even and }} |b-c|_{is \text{ even}}$ $\Rightarrow (a-b)_{is \text{ even and }} (b-c)_{is \text{ even}}$ $\Rightarrow (a-c) = (a+b) + (b-c)_{is \text{ even}}$

 $\Rightarrow |a-b| \text{ is even}$ $\Rightarrow (a,c) \in R$ $\therefore \text{ R is transitive.}$

R is an equivalence relation.

All elements of $\{1,3,5\}$ are related to each other because they are all odd. So, the modulus of the difference between any two elements is even.

Similarly, all elements $\{2,4\}$ are related to each other because they are all even.

No element of $\{1,3,5\}$ is related to any elements of $\{2,4\}$ as all elements of $\{1,3,5\}$ are odd and all elements of $\{2,4\}$ are even. So, the modulus of the difference between the two elements will not be even.

Question 9:

Show that each of the relation R in the set $A = \{x \in Z : 0 \le x \le 12\}$, given by

i. $R = \{(a,b) : |a-b| \text{ is a mutiple of } 4\}$ ii. $R = \{(a,b) : a = b\}$

Is an equivalence relation. Find the set of all elements related to 1 in each case.

Solution:

$$A = \{x \in Z : 0 \le x \le 12\} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$$

i.
$$R = \{(a, b) : |a - b| \text{ is a mutiple of } 4\}$$
$$a \in A, (a, a) \in R \qquad [|a - a| = 0 \text{ is a multiple of } 4]$$
$$\therefore \text{ R is reflexive.}$$

 $(a,b) \in R \Rightarrow |a-b|$ [is a multiple of 4] $\Rightarrow |-(a-b)| = |b-a|$ [is a multiple of 4] $(b,a) \in R$ \therefore R is symmetric.

$$(a,b) \in R$$
 and $(b,c) \in R$
 $\Rightarrow |a-b|$ is a multiple of 4 and $|b-c|$ is a multiple of 4
 $\Rightarrow (a-b)$ is a multiple of 4 and $(b-c)$ is a multiple of 4
 $\Rightarrow (a-c) = (a-b) + (b-c)$ is a multiple of 4
 $\Rightarrow |a-c|$ is a multiple of 4

 $\Rightarrow (a,c) \in R$ $\therefore \text{ R is transitive.}$ R is an equivalence relation.

The set of elements related to 1 is $\{1,5,9\}$ as |1-1| = 0 is a multiple of 4. |5-1| = 4 is a multiple of 4. |9-1| = 8 is a multiple of 4.

ii.
$$R = \{(a,b) : a = b\}$$
$$a \in A, (a,a) \in R \quad [since a=a]$$
$$\therefore R \text{ is reflective.}$$

$$(a,b) \in R$$

 $\Rightarrow a = b$
 $\Rightarrow b = a$
 $\Rightarrow (b,a) \in R$
 \therefore R is symmetric.

$$(a,b) \in R \text{ and } (b,c) \in \mathbb{R}$$

 $\Rightarrow a = b \text{ and } b = c$
 $\Rightarrow a = c$
 $\Rightarrow (a,c) \in R$
 $\therefore \mathbb{R}$ is transitive.

R is an equivalence relation.

The set of elements related to 1 is $\{1\}$.

Question 10:

Give an example of a relation, which is

- i. Symmetric but neither reflexive nor transitive.
- ii. Transitive but neither reflexive nor symmetric.
- iii. Reflexive and symmetric but not transitive.
- iv. Reflexive and transitive but not symmetric.
- v. Symmetric and transitive but not reflexive.

Solution:

i.

$$A = \{5, 6, 7\}$$

$$R = \{(5, 6), (6, 5)\}$$

(5,5), (6,6), (7,7) $\notin R$
R is not reflexive as $(5,5), (6,6), (7,7) \notin R$
(5,6), (6,5) $\in R$ and (6,5) $\in R$, R is symmetric.
 $\Rightarrow (5,6), (6,5) \in R$, but $(5,5) \notin R$
 \therefore R is not transitive.
Relation R is symmetric but not reflexive or transitive

ii. $R = \{(a,b): a < b\}$

 $a \in R, (a, a) \notin R \text{ [since } a \text{ cannot be less than itself]}$ R is not reflexive. $(1, 2) \in R \text{ (as } 1 < 2)$ But 2 is not less than 1 $\therefore (2, 1) \notin R$ R is not symmetric. $(a, b), (b, c) \in R$ $\Rightarrow a < b \text{ and } b < c$ $\Rightarrow a < c$

$$\Rightarrow (a,c) \in R$$

 \therefore R is transitive.

Relation R is transitive but not reflexive and symmetric.

iii. $A = \{4, 6, 8\}$ $A = \{(4, 4), (6, 6), (8, 8), (4, 6), (6, 8), (8, 6)\}$

R is reflexive since $a \in A, (a, a) \in R$

R is symmetric since $(a,b) \in R$

$$\Rightarrow (b,a) \in R \quad for a, b \in R$$

R is not transitive since $(4,6), (6,8) \in R, but (4,8) \notin R$ R is reflexive and symmetric but not transitive.

iv.
$$R = \{(a,b) : a^3 > b^3\}$$
$$(a,a) \in R$$
$$\therefore \text{ R is reflexive.}$$
$$(2,1) \in R$$
$$But(1,2) \notin R$$

 \therefore R is not symmetric.

$$(a,b),(b,c) \in R$$

 $\Rightarrow a^3 \ge b^3 \text{ and } b^3 < c^3$
 $\Rightarrow a^3 < c^3$
 $\Rightarrow (a,c) \in R$
 $\therefore R$ is transitive.
R is reflexive and transitive but not symmetric

v. Let
$$A = \{-5, -6\}$$

 $R = \{(-5, -6), (-6, -5), (-5, -5)\}$
R is not reflexive as $(-6, -6) \notin R$
 $(-5, -6), (-6, -5) \in R$
R is symmetric.
 $(-5, -6), (-6, -5) \in R$
 $(-5, -5) \in R$
R is transitive.
 \therefore R is symmetric and transitive but not reflexive.

Question 11:

Show that the relation R in the set A of points in a plane given by

 $R = \{(P,Q) : \text{Distance of the point P from the origin is same as the distance of the point Q from the origin}\}$

, is an equivalence relation. Further, show that the set of all points related to a point $P \neq (0,0)$ is the circle passing through P with origin as centre.

Solution:

 $R = \{(P,Q) : \text{Distance of the point P from the origin is same as the distance of the point Q from the origin}\}$

Clearly, $(P, P) \in R$ \therefore R is reflexive. $(P,Q) \in R$ Clearly R is symmetric. $(P,Q), (Q,S) \in R$ \Rightarrow The distance of P and

 \Rightarrow The distance of *P* and *Q* from the origin is the same and also, the distance of *Q* and *S* from the origin is the same.

 \Rightarrow The distance of *P* and *S* from the origin is the same.

 $(P,S) \in R$

 \therefore R is transitive.

R is an equivalence relation.

The set of points related to $P \neq (0,0)$ will be those points whose distance from origin is same as distance of P from the origin.

Set of points forms a circle with the centre as origin and this circle passes through P.

Question 12:

Show that the relation R in the set A of all triangles as $R = \{(T_1, T_2): T_1 \text{ is similar to } T_2\}$, is an equivalence relation. Consider three right angle triangles T_1 with sides 3,4,5, T_2 with sides 5,12,13 and T_3 with sides 6,8,10. Which triangle among T_1, T_2, T_3 are related?

Solution:

 $R = \{(T_1, T_2): T_1 \text{ is similar to } T_2\}$ R is reflexive since every triangle is similar to itself.

If $(T_1, T_2) \in R$, then T_1 is similar to T_2 . T_2 is similar to T_1 . $\Rightarrow (T_2, T_1) \in R$ \therefore R is symmetric.

 $(T_1,T_2),(T_2,T_3)\in R$

 T_1 is similar to T_2 and T_2 is similar to T_3 . $\therefore T_1$ is similar to T_3 . $\Rightarrow (T_1, T_3) \in R$ $\therefore R$ is transitive. $\frac{3}{6} = \frac{4}{8} = \frac{5}{10} = \left(\frac{1}{2}\right)$

 \therefore Corresponding sides of triangles T_1 and T_3 are in the same ratio. Triangle T_1 is similar to triangle T_3 . Hence, T_1 is related to T_3 .

Question 13:

Show that the relation R in the set A of all polygons as $R = \{(P_1, P_2): P_1 \text{ and } P_2 \text{ have same number of sides}\}$, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3,4*and*5?

Solution:

 $R = \{(P_1, P_2) : P_1 \text{ and } P_2 \text{ have same number of sides}\}$ $(P_1, P_2) \in R \text{ as same polygon has same number of sides.}$ $\therefore \text{ R is reflexive.}$ $(P_1, P_2) \in R$ $\Rightarrow P_1 \text{ and } P_2 \text{ have same number of sides.}$ $\Rightarrow P_2 \text{ and } P_1 \text{ have same number of sides.}$ $\Rightarrow (P_2, P_1) \in R$ $\therefore \text{ R is symmetric.}$ $(P_1, P_2), (P_2, P_3) \in R$ $\Rightarrow P_1 \text{ and } P_2 \text{ have same number of sides.}$

 P_2 and P_3 have same number of sides.

 \Rightarrow P_1 and P_3 have same number of sides.

 $\Rightarrow (P_1, P_3) \in R$

 \therefore R is transitive.

R is an equivalence relation.

The elements in A related to right-angled triangle (T) with sides 3,4,5 are those polygons which have three sides.

Set of all elements in a related to triangle T is the set of all triangles.

Question 14:

Let L be the set of all lines in XY plane and R be the relation in L defined as $R = \{(L_1, L_2) : L_1 \text{ is parallel to } L_2\}$. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.

Solution:

 $R = \{(L_1, L_2) : L_1 \text{ is parallel to } L_2\}$ R is reflexive as any line L_1 is parallel to itself i.e., $(L_1, L_2) \in R$ If $(L_1, L_2) \in R$, then $\Rightarrow L_1$ is parallel to L_2 . $\Rightarrow L_2$ is parallel to L_1 .

 $\Rightarrow (L_2, L_1) \in R$ \therefore R is symmetric.

 $(L_1, L_2), (L_2, L_3) \in R$ $\Rightarrow L_1$ is parallel to L_2 $\Rightarrow L_2$ is parallel to L_3 $\therefore L_1$ is parallel to L_3 . $\Rightarrow (L_1, L_3) \in R$ $\therefore \mathbb{R}$ is transitive.

R is an equivalence relation.

Set of all lines related to the line y = 2x+4 is the set of all lines that are parallel to the line y = 2x+4.

Slope of the line y = 2x + 4 is m = 2.

Line parallel to the given line is in the form y = 2x + c, where $c \in R$.

Set of all lines related to the given line is given by y = 2x + c, where $c \in R$. Question 15:

Let R be the relation in the set $\{1,2,3,4\}$ given by

 $R = \{(1,2)(2,2), (1,1), (4,4), (1,3), (3,3), (3,2)\}.$

Choose the correct answer.

- A. R is reflexive and symmetric but not transitive.
- B. R is reflexive and transitive but not symmetric.
- C. R is symmetric and transitive but not reflexive.
- D. R is an equivalence relation.

Solution:

 $R = \{(1,2)(2,2), (1,1), (4,4), (1,3), (3,3), (3,2)\}$ (*a*,*a*) $\in R$ for every $a \in \{1,2,3,4\}$ \therefore R is reflexive.

 $(1,2) \in R$ but $(2,1) \notin R$ \therefore R is not symmetric.

 $(a,b), (b,c) \in R$ for all $a, b, c \in \{1,2,3,4\}$ \therefore R is not transitive.

R is reflexive and transitive but not symmetric.

The correct answer is B.

Question 16:

Let R be the relation in the set N given by $R = \{(a,b): a = b - 2, b > 6\}$. Choose the correct answer.

A. $(2,4) \in R$ B. $(3,8) \in R$ C. $(6,8) \in R$ D. $(8,7) \in R$

Solution:

 $R = \{(a,b): a = b - 2, b > 6\}$ Now, $b > 6, (2,4) \notin R$ $3 \neq 8 - 2$ $\therefore (3,8) \notin R \text{ and as } 8 \neq 7 - 2$ $\therefore (8,7) \notin R$ Consider (6,8) 8 > 6 and 6 = 8 - 2 $\therefore (6,8) \in R$ The correct answer is C.

EXERCISE 1.2

Question 1:

Show that the function $f: R_{\bullet} \to R_{\bullet}$ defined by $(x) = \frac{1}{x}$ is one –one and onto, where R_{\bullet} is the set of all non –zero real numbers. Is the result true, if the domain R_{\bullet} is replaced by N with co-domain being same as R_{\bullet} ?

Solution:

 $f: R_{\bullet} \to R_{\bullet} \text{ is by } f(x) = \frac{1}{x}$ For one-one: $x, y \in R_{\bullet} \text{ such that } f(x) = f(y)$ $\Rightarrow \frac{1}{x} = \frac{1}{y}$ $\Rightarrow x = y$

 \therefore *f* is one-one.

For onto:

For $y \in R$, there exists $x = \frac{1}{y} \in R$. $[as y \notin 0]$ such that $f(x) = \frac{1}{\left(\frac{1}{y}\right)} = y$

 $\therefore f$ is onto.

Given function f is one-one and onto.

Consider function $g: N \to R_{\bullet}$ defined by $g(x) = \frac{1}{x}$

We have,
$$g(x_1) = g(x_2) \Rightarrow \frac{1}{x_1} = \frac{1}{x_2} \Rightarrow x_1 = x_2$$

 $\therefore g$ is one-one.

g is not onto as for $1.2 \in R$, there exist any x in N such that $g(x) = \frac{1}{1.2}$

Function \mathcal{G} is one-one but not onto.

Question 2:

Check the injectivity and surjectivity of the following functions:

- i. $f: N \to N$ given by $f(x) = x^2$
- ii. $f: Z \to Z$ given by $f(x) = x^2$
- iii. $f: R \to R$ given by $f(x) = x^2$
- iv. $f: N \to N$ given by $f(x) = x^3$
- v. $f: Z \to Z$ given by $f(x) = x^3$

Solution:

i. For $f: N \to N$ given by $f(x) = x^2$ $x, y \in N$ $f(x) = f(y) \Rightarrow x^2 = y^2 \Rightarrow x = y$ $\therefore f$ is injective.

 $2 \in N$. But, there does not exist any x in N such that $f(x) = x^2 = 2$ $\therefore f$ is not surjective Function f is injective but not surjective.

ii. $f: Z \to Z$ given by $f(x) = x^2$ f(-1) = f(1) = 1 but $-1 \neq 1$ $\therefore f$ is not injective.

> $-2 \in Z$ But, there does not exist any $x \in Z$ such that $f(x) = -2 \Rightarrow x^2 = -2$ $\therefore f$ is not surjective.

Function f is neither injective nor surjective.

iii. $f: R \to R$ given by $f(x) = x^2$ f(-1) = f(1) = 1 but $-1 \neq 1$ $\therefore f$ is not injective.

> $-2 \in Z$ But, there does not exist any $x \in Z$ such that $f(x) = -2 \Rightarrow x^2 = -2$ $\therefore f$ is not surjective. Function f is neither injective nor surjective.

iv. $f: N \to N$ given by $f(x) = x^3$ $x, y \in N$ $f(x) = f(y) \Rightarrow x^3 = y^3 \Rightarrow x = y$ $\therefore f$ is injective.

> $2 \in N$. But, there does not exist any x in N such that $f(x) = x^3 = 2$ $\therefore f$ is not surjective Function f is injective but not surjective.

v. $f: Z \to Z$ given by $f(x) = x^3$ $x, y \in Z$ $f(x) = f(y) \Rightarrow x^3 = y^3 \Rightarrow x = y$ $\therefore f$ is injective.

> $2 \in Z$. But, there does not exist any x in Z such that $f(x) = x^3 = 2$ $\therefore f$ is not surjective.

Function f is injective but not surjective.

Question 3:

Prove that the greatest integer function $f: R \to R$ given by f(x) = [x] is neither one-one nor onto, where $\begin{bmatrix} x \end{bmatrix}$ denotes the greatest integer less than or equal to x.

Solution:

 $f: R \to R$ given by f(x) = [x]f(1.2) = [1.2] = 1, f(1.9) = [1.9] = 1 $\therefore f(1.2) = f(1.9), \text{ but } 1.2 \neq 1.9$ \therefore f is not one-one.

Consider $0.7 \in R$ f(x) = [x] is an integer. There does not exist any element $x \in R$ such that f(x) = 0.7 \therefore *f* is not onto. The greatest integer function is neither one-one nor onto.

Question 4:

Show that the modulus function $f: R \to R$ given by f(x) = |x| is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x| is -x, if x is negative.

Solution:

$$f(x) = |x| = \begin{cases} x, \text{ if } x \ge 0 \\ -x, \text{ if } x < 0 \end{cases}$$

$$f(-1) = |-1| = 1 \text{ and } f(1) = |1| = 1$$

$$\therefore f(-1) = f(1) \text{ but } -1 \neq 1$$

$$\therefore f \text{ is not one-one.}$$

Consider $-1 \in R$

f(x) = |x| is non-negative. There exist any element x in domain R such that f(x) = |x| = -1 $\therefore f$ is not onto.

The modulus function is neither one-one nor onto.

Question 5:

given by $f(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -1, & \text{if } x < 0 \end{cases}$ is neither one-one nor

Show that the signum function $f : R \to R$ given by onto.

Solution:

 $f(x) = \begin{cases} 1, \text{ if } x > 0\\ 0, \text{ if } x = 0\\ -1, \text{ if } x < 0 \end{cases}$ $f(1) = f(2) = 1, \text{ but } 1 \neq 2$ $\therefore f \text{ is not one-one.}$

 $f(x)_{\text{takes only 3 values}}(1,0,-1)$ for the element -2 in co-domain

R, there does not exist any x in domain R such that f(x) = -2. $\therefore f$ is not onto.

The signum function is neither one-one nor onto.

Question 6:

Let $A = \{1, 2, 3\}$, $B = \{4, 5, 6, 7\}$ and let $f = \{(1, 4), (2, 5), (3, 6)\}$ be a function from A to B. Show that f is one-one.

Solution:

 $A = \{1, 2, 3\}, B = \{4, 5, 6, 7\}$ $f : A \to B$ is defined as $f = \{(1, 4), (2, 5), (3, 6)\}$ $\therefore f(1) = 4, f(2) = 5, f(3) = 6$ It is seen that the images of distinct elements of A under f are distinct.

 $\therefore f$ is one-one.

Question 7:

In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.

- i. $f: R \to R$ defined by f(x) = 3 4x
- ii. $f: R \to R$ defined by $f(x) = 1 + x^2$

Solution:

i. $f: R \rightarrow R$ defined by f(x) = 3 - 4x $x_1, x_2 \in R$ such that $f(x_1) = f(x_2)$ $\Rightarrow 3 - 4x_1 = 3 - 4x_2$ $\Rightarrow -4x = -4x_2$ $\Rightarrow x_1 = x_2$ $\therefore f$ is one-one.

For any real number $(y)_{in} R$, there exists $\frac{3-y}{4}_{in} R$ such that $f\left(\frac{3-y}{4}\right) = 3-4\left(\frac{3-y}{4}\right) = y$ $\therefore f$ is onto. Hence, f is bijective.

ii. $f: R \rightarrow R$ defined by $f(x) = 1 + x^2$ $x_1, x_2 \in R$ such that $f(x_1) = f(x_2)$ $\Rightarrow 1 + x_1^2 = 1 + x_2^2$ $\Rightarrow x_1^2 = x_2^2$ $\Rightarrow x_1 = \pm x_2$ $\therefore f(x_1) = f(x_2)$ does not imply that $x_1 = x_2$

```
Consider f(1) = f(-1) = 2

\therefore f is not one-one.
```

Consider an element -2 in co domain R. It is seen that $f(x) = 1 + x^2$ is positive for all $x \in R$. $\therefore f$ is not onto. Hence, f is neither one-one nor onto.

Question 8:

Let A and B be sets. Show that $f: A \times B \to B \times A$ such that (a,b) = (b,a) is a bijective function.

Solution:

$$f: A \times B \to B \times A \text{ is defined as } (a,b) = (b,a).$$
$$(a_1,b_1), (a_2,b_2) \in A \times B \text{ such that } f(a_1,b_1) = f(a_2,b_2)$$

 $\Rightarrow (b_1, a_1) = (b_2, a_2)$ $\Rightarrow b_1 = b_2 \text{ and } a_1 = a_2$ $\Rightarrow (a_1, b_1) = (a_2, b_2)$ $\therefore f \text{ is one-one.}$ $(b, a) \in B \times A \text{ there exist } (a, b) \in A \times B \text{ such that } f(a, b) = (b, a)$ $\therefore f \text{ is onto.}$ f is bijective.

Question 9:

$$f(n) = \begin{cases} \frac{n+1}{2}, \text{ if } n \text{ is odd} \\ \frac{n}{2}, \text{ if } n \text{ is even} \end{cases}$$

Let $f: N \to N$ be defined as function f is bijective. Justify your answer. for all $n \in N$. State whether the

Solution:

$$f(n) = \begin{cases} \frac{n+1}{2}, \text{ if } n \text{ is odd} \\ \frac{n}{2}, \text{ if } n \text{ is even} \end{cases}$$
for all $n \in N$.
$$f(1) = \frac{1+1}{2} = 1 \text{ and } f(2) = \frac{2}{2} = 1$$
$$f(1) = f(2), \text{ where } 1 \neq 2$$
$$\therefore f \text{ is not one-one.}$$

Consider a natural number n in co domain N.

Case I: *n* is odd $\therefore n = 2r + 1$ for some $r \in N$ there exists $4r + 1 \in N$ such that $f(4r+1) = \frac{4r+1+1}{2} = 2r+1$

Case II: *n* is even $\therefore n = 2r$ for some $r \in N$ there exists $4r \in N$ such that $f(4r) = \frac{4r}{2} = 2r$ $\therefore f$ is onto.

f is not a bijective function.

Question 10:

Let $A = R - \{3\}, B = R - \{1\}$ and $f : A \to B$ defined by $f(x) = \left(\frac{x-2}{x-3}\right)$. Is f one-one and onto? Justify your answer.

Solution:

 $A = R - \{3\}, B = R - \{1\} \text{ and } f : A \to B \text{ defined by } f(x) = \left(\frac{x-2}{x-3}\right)$ $x, y \in A \text{ such that } f(x) = f(y)$ $\Rightarrow \frac{x-2}{x-3} = \frac{y-2}{y-3}$ $\Rightarrow (x-2)(y-3) = (y-2)(x-3)$ $\Rightarrow xy - 3x - 2y + 6 = xy - 3y - 2x + 6$ $\Rightarrow -3x - 2y = -3y - 2x$ $\Rightarrow 3x - 2x = 3y - 2y$ $\Rightarrow x = y$ $\therefore f \text{ is one-one.}$

Let
$$y \in B = R - \{1\}$$
, then $y \neq 1$

The function f is onto if there exists $x \in A$ such that f(x) = y. Now,

$$f(x) = y$$

$$\Rightarrow \frac{x-2}{x-3} = y$$

$$\Rightarrow x-2 = xy-3y$$

$$\Rightarrow x(1-y) = -3y+2$$

$$\Rightarrow x = \frac{2-3y}{1-y} \in A$$

$$[y \neq 1]$$

Thus, for any
$$y \in B$$
, there exists $\frac{2-3y}{1-y} \in A$ such that

$$f\left(\frac{2-3y}{1-y}\right) = \frac{\left(\frac{2-3y}{1-y}\right)-2}{\left(\frac{2-3y}{1-y}\right)-3} = \frac{2-3y-2+2y}{2-3y-3+3y} = \frac{-y}{-1} = y$$

 $\therefore f$ is onto. Hence, the function is one-one and onto.

Question 11:

Let $f: R \to R$ defined as $f(x) = x^4$. Choose the correct answer.

- A. f is one-one onto
- B. f is many-one onto
- C. f is one-one but not onto
- D. f is neither one-one nor onto

Solution:

 $f: R \to R \text{ defined as } f(x) = x^4$ $x, y \in R \text{ such that } f(x) = f(y)$ $\Rightarrow x^4 = y^4$ $\Rightarrow x = \pm y$ $\therefore f(x) = f(y) \text{ does not imply that } x = y.$ For example f(1) = f(-1) = 1

 $\therefore f$ is not one-one.

Consider an element 2 in co domain R there does not exist any x in domain R such that f(x) = 2

 $\therefore f$ is not onto.

Function f is neither one-one nor onto. The correct answer is D.

Question 12:

Let $f: R \to R$ defined as f(x) = 3x. Choose the correct answer.

- A. f is one-one onto
- B. f is many-one onto
- C. f is one-one but not onto
- D. f is neither one-one nor onto

Solution:

 $f: R \to R \text{ defined as } f(x) = 3x$ $x, y \in R \text{ such that } f(x) = f(y)$ $\Rightarrow 3x = 3y$ $\Rightarrow x = y$

 $\therefore f$ is one-one.

For any real number y in co domain R, there exist $\frac{y}{3}$ in R such that $f\left(\frac{y}{3}\right) = 3\left(\frac{y}{3}\right) = y$ $\therefore f$ is onto.

Hence, function f is one-one and onto. The correct answer is A.

EXERCISE 1.3

Question 1:

Let $f: \{1,3,4\} \to \{1,2,5\}$ and $g: \{1,2,5\} \to \{1,3\}$ be given by $f = \{(1,2), (3,5), (4,1)\}$ and $g = \{(1,3), (2,3), (5,1)\}$. Write down *gof*.

Solution:

The functions $f:\{1,3,4\} \rightarrow \{1,2,5\}$ and $g:\{1,2,5\} \rightarrow \{1,3\}$ are $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(1,3),(2,3),(5,1)\}$ gof(1)=g[f(1)]=g(2)=3 [as f(1)=2 and g(2)=3] gof(3)=g[f(3)]=g(5)=1 [as f(3)=5 and g(5)=1] gof(4)=g[f(4)]=g(1)=3 [as f(4)=1 and g(1)=3] $\therefore gof=\{(1,3),(3,1),(4,3)\}$

Question 2:

Let f, g, h be functions from R to R. Show that (f+g)oh = foh + goh(f.g)oh = (foh).(goh)

Solution:

(f+g)oh = foh + goh LHS = [(f+g)oh](x) = (f+g)[h(x)] = f[h(x)] + g[h(x)] = (foh)(x) + goh(x) $= \{(foh) + (goh)\}(x) = RHS$ $\therefore \{(f+g)oh\}(x) = \{(foh) + (goh)\}(x) \text{ for all } x \in R$ Hence, (f+g)oh = foh + goh

$$(f \cdot g)oh = (foh).(goh)$$

$$LHS = [(f \cdot g)oh](x)$$

$$= (f \cdot g)[h(x)] = f[h(x)].g[h(x)]$$

$$= (foh)(x).(goh)(x)$$

$$= \{(foh).(goh)\}(x) = RHS$$

$$\therefore [(f \cdot g)oh](x) = \{(foh).(goh)\}(x) \text{ for all } x \in R$$
Hence, $(f \cdot g)oh = (foh).(goh)$

Question 3:

Find gof and fog, if

i.
$$f(x) = |x|_{and} g(x) = |5x-2|$$

ii. $f(x) = 8x^3_{and} g(x) = x^{\frac{1}{3}}$

Solution:

i.
$$f(x) = |x| \text{ and } g(x) = |5x-2|$$

 $\therefore gof(x) = g(f(x)) = g(|x|) = |5|x|-2|$
 $fog(x) = f(g(x)) = f(|5x-2|) = ||5x-2|| = |5x-2|$

ii.
$$f(x) = 8x^3 \text{ and } g(x) = x^{\frac{1}{3}}$$

 $\therefore gof(x) = g(f(x)) = g(8x^3) = (8x^3)^{\frac{1}{3}} = 2x$
 $fog(x) = f(g(x)) = f\left(x^{\frac{1}{3}}\right)^3 = 8\left(x^{\frac{1}{3}}\right)^3 = 8x$

Question 4:

If
$$f(x) = \frac{(4x+3)}{(6x-4)}, x \neq \frac{2}{3}$$
, show that for $(x) = x$, for all $x \neq \frac{2}{3}$. What is the reverse of f ?

Solution:

$$(fof)(x) = f(f(x)) = f\left(\frac{4x+3}{6x-4}\right)$$
$$= \frac{4\left(\frac{4x+3}{6x-4}\right)+3}{6\left(\frac{4x+3}{6x-4}\right)-4} = \frac{16x+12+18x-12}{24x+18-24x+16} = \frac{34x}{34} = x$$
$$\therefore fof(x) = x \quad for \ all \ x \neq \frac{2}{3}$$
$$\Rightarrow fof = 1$$

Hence, the given function f is invertible and the inverse of f is f itself.

Question 5:

State with reason whether the following functions have inverse.

- i. $f: \{1, 2, 3, 4\} \rightarrow \{10\}_{\text{with}} f = \{(1, 10), (2, 10), (3, 10), (4, 10)\}$
- ii. $g: \{5, 6, 7, 8\} \rightarrow \{1, 2, 3, 4\}$ with $g = \{(5, 4), (6, 3), (7, 4), (8, 2)\}$
- iii. $h: \{2,3,4,5\} \rightarrow \{7,9,11,13\}$ with $h = \{(2,7), (3,9), (4,11), (5,13)\}$

Solution:

- i. $f: \{1, 2, 3, 4\} \rightarrow \{10\}_{\text{with}} f = \{(1, 10), (2, 10), (3, 10), (4, 10)\}$ f is a many one function as f(1) = f(2) = f(3) = f(4) = 10 $\therefore f \text{ is not one-one.}$ Function f does not have an inverse.
- ii. $g: \{5, 6, 7, 8\} \rightarrow \{1, 2, 3, 4\}$ with $g = \{(5, 4), (6, 3), (7, 4), (8, 2)\}$ g is a many one function as g(5) = g(7) = 4
 - $\therefore g$ is not one-one. Function g does not have an inverse.
- iii. $h: \{2,3,4,5\} \rightarrow \{7,9,11,13\}$ with $h = \{(2,7), (3,9), (4,11), (5,13)\}$

All distinct elements of the set $\{2,3,4,5\}$ have distinct images under h. $\therefore h$ is one-one. $\therefore h$ is one-one. $\{7,0,11,13\}$

h is onto since for every element *y* of the set $\{7,9,11,13\}$, there exists an element *x* in the set $\{2,3,4,5\}$, such that h(x) = y. *h* is a one-one and onto function. Function *h* has an inverse.

Question 6:

Show that $f:[-1,1] \to R$, given by $f(x) = \frac{x}{(x+2)}$ is one-one. Find the inverse of the function $f:[-1,1] \to Range f$.

(Hint: For $y \in Range f, y = f(x) = \frac{x}{x+2}$, for some x in [-1,1], i.e., $x = \frac{2y}{(1-y)}$

Solution:

 $f:[-1,1] \rightarrow R, \text{ given by } f(x) = \frac{x}{(x+2)}$ For one-one f(x) = f(y) $\Rightarrow \frac{x}{x+2} = \frac{y}{y+2}$ $\Rightarrow xy + 2x = xy + 2y$ $\Rightarrow 2x = 2y$ $\Rightarrow x = y$ $\therefore f \text{ is a one-one function.}$

It is clear that $f: [-1,1] \to R$ is onto.

: $f:[-1,1] \to R$ is one-one and onto and therefore, the inverse of the function $f:[-1,1] \to R$ exists.

Let $g: Range f \to [-1,1]$ be the inverse of f. Let Y be an arbitrary element of range f. Since $f:[-1,1] \to Range f$ is onto, we have: y = f(x) for same $x \in [-1,1]$ $\Rightarrow y = \frac{x}{x+2}$ $\Rightarrow xy+2y = x$ $\Rightarrow x(1-y) = 2y$ $\Rightarrow x = \frac{2y}{1-y}, y \neq 1$

Now, let us define $g: Range f \rightarrow [-1,1]_{as}$

$$g(y) = \frac{2y}{1-y}, y \neq 1$$

Now,

$$(gof)(x) = g(f(x)) = g\left(\frac{x}{x+2}\right) = \frac{2\left(\frac{x}{x+2}\right)}{1-\frac{x}{x+2}} = \frac{2x}{x+2-x} = \frac{2x}{2} = x$$

$$(fog)(x) = f(g(y)) = f\left(\frac{2y}{1-y}\right) = \frac{\frac{2y}{1-y}}{\frac{2y}{1-y}+2} = \frac{2y}{2y+2-2y} = \frac{2y}{2} = y$$

$$\therefore gof = I_{[-1,1]} \quad and \quad fog = I_{Rangef}$$

$$\therefore f^{-1} = g$$

$$\Rightarrow f^{-1}(y) = \frac{2y}{1-y}, y \neq 1$$

Question 7:

Consider $f: R \to R$ given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.

Solution:

 $f: R \to R \text{ given by } f(x) = 4x + 3$ For one-one f(x) = f(y) $\Rightarrow 4x + 3 = 4y + 3$ $\Rightarrow 4x = 4y$ $\Rightarrow x = y$ $\therefore f \text{ is a one-one function.}$

For onto

 $y \in R$, let y = 4x + 3 $\Rightarrow x = \frac{y - 3}{4} \in R$

Therefore, for any $y \in R$, there exists $x = \frac{y-3}{4} \in R$ such that $f(x) = f\left(\frac{y-3}{4}\right) = 4\left(\frac{y-3}{4}\right) + 3 = y$ $\therefore f$ is onto.

Thus, f is one-one and onto and therefore, f^{-1} exists. Let us define $g: R \to R$ by $g(x) = \frac{y-3}{4}$

Now,

$$(gof)(x) = g(f(x)) = g(4x+3) = \frac{(4x+3)-3}{4} = x$$

 $(fog)(y) = f(g(y)) = f(\frac{y-3}{4}) = 4(\frac{y-3}{4}) + 3 = y - 3 + 3 = y$
 $\therefore gof = fog = I_R$

Hence, f is invertible and the inverse of f is given by $f^{-1}(y) = g(y) = \frac{y-3}{4}$.

Question 8:

Consider $f: R_+ \to [4,\infty)$ given by $f(x) = x^2 + 4$. Show that f is invertible with inverse f^{-1} of given f by $f^{-1}(y) = \sqrt{y-4}$, where R_+ is the set of all non-negative real numbers.

Solution:

 $f: R_+ \to [4, \infty) \text{ given by } f(x) = x^2 + 4$ For one-one: Let f(x) = f(y) $\Rightarrow x^2 + 4 = y^2 + 4$ $\Rightarrow x^2 = y^2$ $\Rightarrow x = y$ [as $x \in R$] $\therefore f$ is a one -one function.

For onto:

For $y \in [4, \infty)$, let $y = x^2 + 4$ $\Rightarrow x^2 = y - 4 \ge 0$ [as $y \ge 4$] $\Rightarrow x = \sqrt{y - 4} \ge 0$

Therefore, for any $y \in R$, there exists $x = \sqrt{y-4} \in R$ such that $f(x) = f(\sqrt{y-4}) = (\sqrt{y-4})^2 + 4 = y - 4 + 4 = y$ $\therefore f$ is an onto function.

Thus, f is one-one and onto and therefore, f^{-1} exists.

Let us define $g:[4,\infty) \to R_+$ by

$$g(y) = \sqrt{y-4}$$

Now, $gof(x) = g(f(x)) = g(x^2+4) = \sqrt{(x^2+4)-4} = \sqrt{x^2} = x$
And $fog(y) = f(g(y)) = f(\sqrt{y-4}) = (\sqrt{y-4})^2 + 4 = (y-4) + 4 = y$
 $\therefore gof = fog = I_R$
Hence, f is invertible and the inverse of f is given by
 $f^{-1}(y) = g(y) = \sqrt{y-4}$.

Question 9:

Consider $f: R_+ \to [-5,\infty)$ given by $f(x) = 9x^2 + 6x - 5$. Show that f is invertible with $f^{-1}(y) = \left(\frac{\left(\sqrt{y+6}\right) - 1}{3}\right)$.

Solution:

$$f: R_+ \to [-5, \infty) \text{ given by } f(x) = 9x^2 + 6x - 5$$

Let *Y* be an arbitrary element of $[-5, \infty)$.
Let $y = 9x^2 + 6x - 5$
 $\Rightarrow y = (3x+1)^2 - 1 - 5$
 $\Rightarrow y = (3x+1)^2 - 6$
 $\Rightarrow (3x+1)^2 = y + 6$
 $\Rightarrow 3x+1 = \sqrt{y+6}$ [as $y \ge -5 \Rightarrow y+6 > 0$]
 $\Rightarrow x = \frac{\sqrt{y+6}-1}{3}$

 \therefore f is onto, thereby range $f = [-5, \infty)$.

Let us define
$$g: [-5,\infty) \to R_+$$
 as $g(y) = \frac{\sqrt{y+6}-1}{3}$

We have,

$$(gof)(x) = g(f(x)) = g(9x^{2} + 6x - 5)$$

= $g((3x+1)^{2} - 6)$
= $\frac{\sqrt{(3x+1)^{2} - 6 + 6} - 1}{3}$
= $\frac{3x+1-1}{3} = x$

And,

$$(fog)(y) = f(g(y)) = f\left(\frac{\sqrt{y+6}-1}{3}\right)$$
$$= \left[3\left(\frac{\sqrt{y+6}-1}{3}\right)+1\right]^2 - 6$$
$$= (\sqrt{y+6})^2 - 6 = y + 6 - 6 = y$$
$$\therefore gof = I_R \quad and \quad fog = I_{(-5,\infty)}$$

Hence, f is invertible and the inverse of f is given by

$$f^{-1}(y) = g(y) = \frac{\sqrt{y+6}-1}{3}$$

Question 10:

Let $f: X \to Y$ be an invertible function. Show that f has unique inverse.

(Hint: suppose g_1 and g_2 are two inverses of f. Then for all $y \in Y$, $fog_1(y) = I_y(y) = fog_2(y)$. Use one-one ness of f.

Solution:

Let $f: X \to Y$ be an invertible function.

Also suppose f has two inverses $(g_1 \text{ and } g_2)$ Then, for all $y \in Y$, $fog_1(y) = I_Y(y) = fog_2(y)$ $\Rightarrow f(g_1(y)) = f(g_2(y))$ $\Rightarrow g_1(y) = g_2(y)$ [f is invertible $\Rightarrow f$ is one-one] $\Rightarrow g_1 = g_2$ [g is one-one]

Hence, f has unique inverse.

Question 11:

Consider $f: \{1,2,3\} \to \{a,b,c\}$ given by f(1) = a, f(2) = b, f(3) = c. Find $(f^{-1})^{-1} = f$.

Solution:

Function $f: \{1,2,3\} \to \{a,b,c\}_{given by} f(1) = a, f(2) = b, f(3) = c$ If we define $g: \{a,b,c\} \to \{1,2,3\}_{as} g(a) = 1, g(b) = 2, g(c) = 3$ (fog)(a) = f(g(a)) = f(1) = a (fog)(b) = f(g(b)) = f(2) = b(fog)(c) = f(g(c)) = f(3) = c

And,

(gof)(1) = g(f(1)) = g(a) = 1(gof)(2) = g(f(2)) = g(b) = 2(gof)(3) = g(f(3)) = g(c) = 3

$$\therefore gof = I_X \quad \text{and} \quad fog = I_Y \quad \text{where} \quad X = \{(1,2,3)\} \text{ and } Y = \{a,b,c\}$$

Thus, the inverse of f exists and $f^{-1} = g$.

:
$$f^{-1}: \{a, b, c\} \to \{1, 2, 3\}$$
 is given by, $f^{-1}(a) = 1, f^{-1}(b) = 2, f^{-1}(c) = 3$

We need to find the inverse of f^{-1} i.e., inverse of \mathcal{G} . If we define $h: \{1,2,3\} \rightarrow \{a,b,c\}_{as} h(1) = a, h(2) = b, h(3) = c$ (goh)(1) = g(h(1)) = g(a) = 1 (goh)(2) = g(h(2)) = g(b) = 2(goh)(3) = g(h(3)) = g(c) = 3

And, (hog)(a) = h(g(a)) = h(1) = a (hog)(b) = h(g(b)) = h(2) = b(hog)(c) = h(g(c)) = h(3) = c

 \therefore goh = I_X and hog = I_Y where $X = \{(1,2,3)\}$ and $Y = \{a,b,c\}$

Thus, the inverse of \mathcal{G} exists and $g^{-1} = h \Rightarrow (f^{-1})^{-1} = h$. It can be noted that h = f. Hence, $(f^{-1})^{-1} = f$

Question 12:

Let $f: X \to Y$ be an invertible function. Show that the inverse of f^{-1} is f i.e., $(f^{-1})^{-1} = f$.

Solution:

Let $f: X \to Y$ be an invertible function.

Then there exists a function $g: Y \to X$ such that $gof = I_X$ and $fog = I_Y$

Here, $f^{-1} = g$ Now, $gof = I_X$ and $fog = I_Y$ $\Rightarrow f^{-1}of = I_X$ and $fof^{-1} = I_Y$

Hence, $f^{-1}: Y \to X$ is invertible and f^{-1} is f i.e., $(f^{-1})^{-1} = f$.

Question 13:

If $f: R \to R$ is given by $f(x) = (3 - x^3)^{\frac{1}{3}}$, then fof(x) is: A. $\frac{1}{x^3}$

A. xB. x^{3} C. xD. $(3-x^{3})$

Solution:

$$f: R \to R \text{ is given by } f(x) = (3 - x^3)^{\frac{1}{3}}$$

$$f(x) = (3 - x^3)^{\frac{1}{3}}$$

$$\therefore \text{ fof } (x) = f(f(x)) = f((3 - x^3)^{\frac{1}{3}}) = \left[3 - ((3 - x^3)^{\frac{1}{3}})^3\right]^{\frac{1}{3}}$$

$$= \left[3 - (3 - x^3)\right]^{\frac{1}{3}} = (x^3)^{\frac{1}{3}} = x$$

$$\therefore \text{ fof } (x) = x$$

The correct answer is C.

Question 14:

If
$$f: R - \left\{-\frac{4}{3}\right\} \to R$$
 be a function defined as $f(x) = \frac{4x}{3x+4}$. The inverse of f is the map
 $g: Range f \to R - \left\{-\frac{4}{3}\right\}$ given by :
A. $g(y) = \frac{3y}{3-4y}$
B. $g(y) = \frac{4y}{4-3y}$
C. $g(y) = \frac{4y}{3-4y}$
D. $g(y) = \frac{3y}{4-3y}$

Solution:

It is given that $f: R - \left\{-\frac{4}{3}\right\} \rightarrow R$ is defined as $f(x) = \frac{4x}{3x+4}$ Let \mathcal{Y} be an arbitrary element of Range f.

Then, there exists $x \in R - \left\{-\frac{4}{3}\right\} \text{ such that } y = f(x).$ $\Rightarrow y = \frac{4x}{3x+4}$ $\Rightarrow 3xy + 4y = 4x$ $\Rightarrow x(4-3y) = 4y$ $\Rightarrow x = \frac{4y}{4-3y}$ Define $f: R - \left\{-\frac{4}{3}\right\} \rightarrow R \text{ as } g(y) = \frac{4y}{4-3y}$ Now,

$$(gof)(x) = g(f(x)) = g\left(\frac{4x}{3x+4}\right)$$
$$= \frac{4\left(\frac{4x}{3x+4}\right)}{4-3\left(\frac{4x}{3x+4}\right)} = \frac{16x}{12x+16-12x}$$
$$= \frac{16x}{16} = x$$

And

$$(fog)(x) = (g(x)) = f\left(\frac{4y}{4-3y}\right)$$
$$= \frac{4\left(\frac{4y}{4-3y}\right)}{3\left(\frac{4y}{4-3y}\right) + 4} = \frac{16y}{12y+16-12y}$$
$$= \frac{16y}{16} = y$$
$$\therefore gof = I_{R-\left\{-\frac{4}{3}\right\}} \text{ and } fog = I_{Range f}$$

Thus, g is the inverse of f i.e., $f^{-1} = g$

Hence, the inverse of f is the map $g: Range f \to R - \left\{-\frac{4}{3}\right\}$, which is given by $g(y) = \frac{4y}{4-3y}$. The correct answer is B.

EXERCISE 1.4

Question 1:

Determine whether or not each of the definition of * given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

i. On Z^+ , define * by a*b = a-bii. On Z^+ , define * by a*b = abiii. On **R**, define * by $a*b = ab^2$ iv. On Z^+ , define * by a*b = |a-b|

v. On \mathbb{Z}^+ , define * by a * b = a

Solution:

i. On \mathbb{Z}^+ , define * by a * b = a - b

It is not a binary operation as the image of (1,2) under * is

 $1^*2 = 1 - 2$ $\Rightarrow -1 \notin \mathbf{Z}^+.$

Therefore, * is not a binary operation.

ii. On \mathbf{Z}^+ , define * by a * b = ab

It is seen that for each $a, b \in \mathbb{Z}^+$, there is a unique element ab in \mathbb{Z}^+ .

This means that * carries each pair (a,b) to a unique element a * b = ab in \mathbb{Z}^+ . Therefore, * is a binary operation.

- iii. On **R**, define * $a * b = ab^2$ It is seen that for each $a,b \in \mathbf{R}$, there is a unique element ab^2 in **R**. This means that * carries each pair (a,b) to a unique element $a * b = ab^2$ in **R**. Therefore, *is a binary operation.
- iv. On Z^+ , define * by $a^*b = |a-b|$ It is seen that for each $a, b \in Z^+$, there is a unique element |a-b| in Z^+ . This means that * carries each pair (a,b) to a unique element $a^*b = |a-b|$ in Z^+ . Therefore, *is a binary operation.
- v. On \mathbb{Z}^+ , define * by a * b = a*carries each pair (a, b) to a unique element in a * b = a in \mathbb{Z}^+ . Therefore, * is a binary operation.

Question 2:

For each binary operation *defined below, determine whether * is commutative or associative.

i. On \mathbf{Z}^+ , define a * b = a - b

- ii. On \mathbf{Q} , define a * b = ab + 1
- iii. On **Q**, define $a * b = \frac{ab}{2}$
- iv. On \mathbf{Z}^+ , define $a * b = 2^{ab}$
- v. On \mathbf{Z}^+ , define $a * b = a^b$

vi. On **R** - {-1}, define
$$a^*b = \frac{a}{b+1}$$

i. On \mathbb{Z}^+ , define $a^*b = a - b$ It can be observed that $1^*2 = 1 - 2 = -1$ and $2^*1 = 2 - 1 = 1$. $\therefore 1^*2 \neq 2^*1$; where 1, $2 \in \mathbb{Z}$ Hence, the operation * is not commutative.

Also,

$$(1*2)*3 = (1-2)*3 = -1*3 = -1-3 = -4$$

 $1*(2*3) = 1*(2-3) = 1*-1 = 1-(-1) = 2$
 $\therefore (1*2)*3 \neq 1*(2*3)$
Hence, the operation * is not associative.

where $1, 2, 3 \in \mathbb{Z}$

ii. On **Q**, define a * b = ab + 1 ab = ba for all $a, b \in Q$ $\Rightarrow ab + 1 = ba + 1$ for all $a, b \in Q$ $\Rightarrow a * b = b * a$ for all $a, b \in Q$ Hence, the operation * is commutative.

$$(1*2)*3 = (1 \times 2+1)*3 = 3*3 = 3 \times 3+1 = 10$$

 $1*(2*3) = 1*(2 \times 3+1) = 1*7 = 1 \times 7+1 = 8$
 $\therefore (1*2)*3 \neq 1*(2*3)$

Hence, the operation * is not associative.

where $1, 2, 3 \in \mathbf{Q}$

iii. On **Q**, define $a^*b = \frac{ab}{2}$ ab = ba for all $a, b \in Q$ $\Rightarrow \frac{ab}{2} = \frac{ab}{2}$ for all $a, b \in Q$ $\Rightarrow a^*b = b^*a$ for all $a, b \in Q$ Hence, the operation * is commutative.

$$(a*b)*c = \left(\frac{ab}{2}\right)*c = \frac{\left(\frac{ab}{2}\right)c}{2} = \frac{abc}{4}$$

And

$$a^*(b^*c) = a^*\left(\frac{bc}{2}\right) = \frac{a\left(\frac{bc}{2}\right)}{2} = \frac{abc}{4}$$

$$\therefore (a^*b)^*c = a^*(b^*c)$$

Hence, the operation * is associative.

```
where a, b, c \in \mathbf{Q}
```

iv. On \mathbb{Z}^+ , define $a * b = 2^{ab}$ ab = ba for all $a, b \in \mathbb{Z}$ $\Rightarrow 2^{ab} = 2^{ba}$ for all $a, b \in \mathbb{Z}$ $\Rightarrow a * b = b * a$ for all $a, b \in \mathbb{Z}$ Hence, the operation * is commutative.

> $(1*2)*3 = 2^{1\times 2}*3 = 4*3 = 2^{4\times 3} = 2^{12}$ $1*(2*3) = 1*2^{2\times 3} = 1*2^{6} = 1*64 = 2^{64}$ $\therefore (1*2)*3 \neq 1*(2*3)$ Hence, the operation * is not associative.

where $1, 2, 3 \in \mathbb{Z}^+$

v. On \mathbb{Z}^+ , define $a * b = a^b$ $1*2 = 1^2 = 1$ $2*1 = 2^1 = 2$ $\therefore 1*2 \neq 2*1$ where $1, 2, \in \mathbb{Z}^+$

Hence, the operation * is not commutative.

$$(2*3)*4 = 2^{3}*4 = 8*4 = 8^{4} = 2^{12}$$

$$2*(3*4) = 2*3^{4} = 2*81 = 2^{81}$$

$$\therefore (2*3)*4 \neq 2*(3*4)$$

Hence, the operation * is not associative.

vi. On
$$\mathbf{R} - \{-1\}$$
, define $a * b = \frac{a}{b+1}$
 $1 * 2 = \frac{1}{2+1} = \frac{1}{3}$
 $2 * 1 = \frac{2}{1+1} = \frac{2}{2} = 1$

where $2,3,4 \in \mathbb{Z}^+$

 $\therefore 1*2 \neq 2*1$

where $1, 2, \in \mathbf{R} - \{-1\}$

Hence, the operation * is not commutative.

$$(1*2)*3 = \frac{1}{3}*3 = \frac{\frac{1}{3}}{3+1} = \frac{1}{12}$$

$$1*(2*3) = 1*\frac{2}{3+1} = 1*\frac{2}{4} = 1*\frac{1}{2} = \frac{1}{\frac{1}{2}+1} = \frac{1}{\frac{3}{2}} = \frac{2}{3}$$

$$\therefore (1*2)*3 \neq 1*(2*3)$$

where $1, 2, 3 \in \mathbf{R} - \{-1\}$

Hence, the operation * is not associative.

Question 3:

Consider the binary operation \land on the set $\{1, 2, 3, 4, 5\}$ defined by $a \land b = \min\{a, b\}$. Write the operation table of the operation \land . Solution:

The binary operation \land on the set $\{1,2,3,4,5\}$ is defined by $a \land b = \min\{a,b\}$ for all $a,b \in \{1,2,3,4,5\}$

The operation table for the given operation \land can be given as:

	1	2	3	4	5	
1	1	1	1	1	1	
2	1	2	2	2	2	
3	1	2	3	3	3	
4	1	2	3	4	4	
5	1	2	3	4	5	

Question 4:

Consider a binary operation * on the set $\{1, 2, 3, 4, 5\}$ given by the following multiplication table.

- i. Compute (2*3)*4 and 2*(3*4)
- ii. Is *commutative?
- iii. Compute (2*3)*(4*5). (Hint: Use the following table)

*	1	2	3	4	5
1	1	1	1	1	1
2	1	2	1	2	1

3	1	1	3	1	1
4	1	2	1	4	1
5	1	1	1	1	5

(2*3)*4=1*4=1

i.
$$2^*(3^*4) = 2^*1 = 1$$

ii. For every $a, b \in \{1, 2, 3, 4, 5\}$, we have a * b = b * a. Therefore, * is commutative.

iii.
$$(2*3)*(4*5)$$

 $(2*3)=1$ and $(4*5)=1$
 $\therefore (2*3)*(4*5)=1*1=1$

Question 5:

Let *' be the binary operation on the set $\{1,2,3,4,5\}$ defined by a *'b = H.C.F. of a and b. Is the operation *' same as the operation * defined in Exercise 4 above? Justify your answer.

Solution:

The binary operation on the set $\{1,2,3,4,5\}$ is defined by a *'b = H.C.F. of a and b. The operation table for the operation *' can be given as:

*'	1	2	3	4	5
1	1	1	1	1	1
2	1	2	1	2	1
3	1	1	3	1	1
4	1	2	1	4	1
5	1	1	1	1	5

The operation table for the operations *' and * are same. operation *' is same as operation *.

Question 6:

Let * be the binary operation on N defined by a * b = L.C.M. of a and b. Find

- i. 5*7,20*16
- ii. Is *commutative?
- iii. Is *associative?
- iv. Find the identity of *in N
- v. Which elements of N are invertible for the operation *?

The binary operation on N is defined by a*b = L.C.M. of a and b.

- i. 5*7=L.C.M of 5and 7=35 20*16=LCM of 20 and 16=80
- ii. L.C.M. of a and b = LCM of b and a for all $a, b \in N$ $\therefore a * b = b * a$ Operation * is commutative.
- iii. For $a,b,c \in N$ (a*b)*c = (L.C.M. of a and b)*c = L.C.M. of a,b,c a*(b*c)=a*(L.C.M. of b and c)=L.C.M. of a,b,c $\therefore (a*b)*c = a*(b*c)$ Operation *is associative.
- iv. L.C.M. of *a* and 1=a= L.C.M. of 1 and *a* for all $a \in N$ a*1=a=1*a for all $a \in N$ Therefore, 1 is the identity of *in N.
- v. An element a in N is invertible with respect to the operation * if there exists an element b in N, such that a*b = e = b*a
 e=1
 L.C.M. of a and b=1=LCM of b and a possible only when a and b are equal to 1.
 1 is the only invertible element of N with respect to the operation *.

Question 7:

Is * defined on the set $\{1,2,3,4,5\}$ by a*b= LCM of *a* and *b* a binary operation? Justify your answer.

Solution:

The operation * on the set $\{1,2,3,4,5\}$ is defined by a*b = LCM of a and b. The operation table for the operation *' can be given as:

*	1	2	3	4	5
1	1	2	3	4	5
2	2	2	6	4	10
3	3	6	3	12	15
4	4	4	12	4	20
5	5	10	15	20	5

 $3*2 = 2*3 = 6 \notin A$, $5*2 = 2*5 = 10 \notin A$, $3*4 = 4*3 = 12 \notin A$, $3*5 = 5*3 = 15 \notin A$, $4*5 = 5*4 = 20 \notin A$ The given operation *is not a binary operation.

Question 8:

Let * be the binary operation on N defined by a*b = H.C.F. of a and b. Is * commutative? Is * associative? Does there exist identity for this binary operation on N?

Solution:

The binary operation * on N defined by a*b = H.C.F. of a and b. $\therefore a*b = b*a$ Operation * is commutative.

For all $a,b,c \in N$, (a*b)*c = (HCF of a and b)*c = HCF of a,b,c a*(b*c)=a*(HCF. of b and c)=HCF of a,b,c $\therefore (a*b)*c = a*(b*c)$ Operation * is associative.

 $e \in N$ will be the identity for the operation^{*} if a * e = a = e * a for all $a \in N$. But this relation is not true for any $a \in N$.

Operation * does not have any identity in N.

Question 9:

Let * be the binary operation on Q of rational numbers as follows:

i. a*b = a-bii. $a*b = a^2 + b^2$ iii. a*b = a + abiv. $a*b = (a-b)^2$ v. $a+b = \frac{ab}{4}$ vi. $a*b = ab^2$

Find which of the binary operations are commutative and which are associative.

i.

On Q, the operation * is defined as a * b = a - b $\frac{1}{2} * \frac{1}{3} = \frac{1}{2} - \frac{1}{3} = \frac{3 - 2}{3} = \frac{1}{6}$ And $\frac{1}{3} * \frac{1}{2} = \frac{1}{3} - \frac{1}{2} = \frac{2 - 3}{6} = \frac{-1}{6}$ $\therefore \left(\frac{1}{2} * \frac{1}{3}\right) \neq \left(\frac{1}{3} * \frac{1}{2}\right)$ when

where
$$\frac{1}{2}, \frac{1}{3} \in Q$$

Operation * is not commutative.

$$\left(\frac{1}{2} * \frac{1}{3}\right) * \frac{1}{4} = \left(\frac{1}{2} - \frac{1}{3}\right) * \frac{1}{4} = \frac{1}{6} * \frac{1}{4} = \frac{1}{6} - \frac{1}{4} = \frac{2 - 3}{12} = \frac{-1}{12}$$

$$\frac{1}{2} * \left(\frac{1}{3} * \frac{1}{4}\right) = \frac{1}{2} * \left(\frac{1}{3} - \frac{1}{4}\right) = \frac{1}{2} * \frac{1}{12} = \frac{1}{2} - \frac{1}{12} = \frac{6 - 1}{12} = \frac{5}{12}$$

$$\therefore \left(\frac{1}{2} * \frac{1}{3}\right) * \frac{1}{4} \neq \frac{1}{2} * \left(\frac{1}{3} * \frac{1}{4}\right)$$

$$\text{where } \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \in Q$$

Operation * is not associative.

ii. On Q, the operation * is defined as
$$a * b = a^2 + b^2$$

For $a, b \in Q$
 $a*b = a^2 + b^2 = b^2 + a^2 = b*a$
 $\therefore a*b = b*a$
Operation * is commutative.

$$(1*2)*3 = (1^{2} + 2^{2})*3 = (1+4)*3 = 5*3 = 5^{2} + 3^{2} = 25 + 9 = 34$$

$$1*(2*3) = 1*(2^{2} + 3^{2}) = 1*(4+9) = 1*13 = 1^{2} + 13^{2} = 1 + 169 = 170$$

$$\therefore (1*2)*3 \neq 1*(2*3)$$
 where 1, 2, 3 $\in Q$
Operation * is not associative.

iii. On Q, the operation * is defined as a * b = a + ab $1*2 = 1+1 \times 2 = 1+2=3$ $2*1 = 2+2 \times 1 = 2+2=4$ $\therefore 1*2 \neq 2*1$ where $1, 2 \in Q$ Operation * is not commutative. $(1*2)*3 = (1+1\times 2)*3 = 3*3 = 3+3\times 3 = 3+9 = 12$ $1*(2*3) = 1*(2+2\times 3) = 1*8 = 1+1\times 8 = 1+8 = 9$ $\therefore (1*2)*3 \neq 1*(2*3)$ where $1, 2, 3 \in Q$ Operation * is not associative.

iv. On Q, the operation * is defined as $a * b = (a-b)^2$ For $a, b \in Q$ $a * b = (a-b)^2$ $b * a = (b-a)^2 = [-(a-b)]^2 = (a-b)^2$ $\therefore a * b = b * a$ Operation * is commutative.

$$(1*2)*3 = (1-2)^2 * 3 = (-1)^2 * 3 = 1*3 = (1-3)^2 = (-2)^2 = 4$$

$$1*(2*3) = 1*(2-3)^2 = 1*(-1)^2 = 1*1 = (1-1)^2 = 0$$

$$\therefore (1*2)*3 \neq 1*(2*3)$$
 where $1, 2, 3 \in Q$

Operation * is not associative.

v. On Q, the operation * is defined as $a + b = \frac{ab}{4}$ For $a, b \in Q$ $a * b = \frac{ab}{4} = \frac{ba}{4} = b * a$ $\therefore a * b = b * a$ Operation * is commutative.

For $a, b, c \in Q$

$$(a*b)*c = \frac{ab}{4}*c = \frac{ab}{4}\cdot \frac{c}{4} = \frac{abc}{16}$$
$$a*(b*c) = a*\frac{ab}{4} = \frac{a\cdot\frac{ab}{4}}{4} = \frac{abc}{16}$$
$$\therefore (a*b)*c = a*(b*c)$$
Operation * is associative.

where $a, b, c \in Q$

vi. On Q, the operation * is defined as $a * b = ab^2$ $\frac{1}{2} * \frac{1}{3} = \frac{1}{2} \cdot \left(\frac{1}{3}\right)^2 = \frac{1}{2} \cdot \frac{1}{9} = \frac{1}{18}$ $\frac{1}{3} * \frac{1}{2} = \frac{1}{3} \cdot \left(\frac{1}{2}\right)^2 = \frac{1}{3} \cdot \frac{1}{4} = \frac{1}{12}$ $\therefore \left(\frac{1}{2} * \frac{1}{3}\right) \neq \left(\frac{1}{3} * \frac{1}{2}\right)$ where $\frac{1}{2}, \frac{1}{3} \in Q$ Operation * is not commutative.

$$\left(\frac{1}{2} * \frac{1}{3}\right) * \frac{1}{4} = \left(\frac{1}{2} \cdot \left(\frac{1}{3}\right)^2\right) * \frac{1}{4} = \frac{1}{18} * \frac{1}{4} = \frac{1}{18} \cdot \left(\frac{1}{4}\right)^2 = \frac{1}{18 \times 16}$$
$$\frac{1}{2} * \left(\frac{1}{3} * \frac{1}{4}\right) = \frac{1}{2} * \left(\frac{1}{3} \cdot \left(\frac{1}{4}\right)^2\right) = \frac{1}{2} * \frac{1}{48} = \frac{1}{2} \cdot \left(\frac{1}{48}\right)^2 = \frac{1}{2 \times (48)^2}$$
$$\therefore \left(\frac{1}{2} * \frac{1}{3}\right) * \frac{1}{4} \neq \frac{1}{2} * \left(\frac{1}{3} * \frac{1}{4}\right) \qquad \text{where } \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \in Q$$

Operation * is not associative.

Operations defined in (ii), (iv), (v) are commutative and the operation defined in (v) is associative.

Question 10:

Find which of the operations given above has identity.

Solution:

An element $e \in Q$ will be the identity element for the operation * if

$$a^*e = a = e^*a$$
, for all $a \in Q$
 $a^*b = \frac{ab}{4}$
 $\Rightarrow a^*e = a$
 $\Rightarrow \frac{ae}{4} = a$
 $\Rightarrow e = 4$

Similarly, it can be checked for e * a = a, we get e = 4 is the identity.

Question 11:

 $A = N \times N$ and * be the binary operation on A defined by (a,b)*(c,d)=(a+c,b+d). Show that * is commutative and associative. Find the identity element for * on A, if any.

Solution:

 $A = N \times N$ and * be the binary operation on A defined by

 $(a,b)^*(c,d) = (a+c,b+d)$ $(a,b)^*(c,d) \in A$ $a,b,c,d \in N$ $(a,b)^*(c,d) = (a+c,b+d)$ $(c,d)^*(a,b) = (c+a,d+b) = (a+c,b+d)$ $\therefore (a,b)^*(c,d) = (c,d)^*(a,b)$ Operation * is commutative.

Now, let $(a,b), (c,d), (e,f) \in A$ $a,b,c,d,e, f \in N$ $[(a,b)^*(c,d)]^*(e,f) = (a+c,b+d)^*(e,f) = (a+c+e,b+d+f)$ $(a,b)^*[(c,d)^*(e,f)] = (a,b)^*(c+e,d+f) = (a+c+e,b+d+f)$ $\therefore [(a,b)^*(c,d)]^*(e,f) = (a,b)^*[(c,d)^*(e,f)]$ Operation * is associative.

An element $e = (e_1, e_2) \in A$ will be an identity element for the operation * if a + e = a = e * a for all $a = (a_1, a_2) \in A$ i.e., $(a_1 + e_1, a_2 + e_2) = (a_1, a_2) = (e_1 + a_1, e_2 + a_2)$, which is not true for any element in A.

Therefore, the operation * does not have any identity element.

Question 12:

State whether the following statements are true or false. Justify.

- i. For an arbitrary binary operation * on a set N, a * a = a for all $a \in N$.
- ii. If * is a commutative binary operation on N, then $a^*(b^*c) = (c^*b)^*a$

Solution:

- i. Define operation * on a set N as a * a = a for all $a \in N$. In particular, for a = 3, $3*3=9 \neq 3$ Therefore, statement (i) is false.
- ii. R.H.S. = (c*b)*a= (b*c)*a [* is commutative] = a*(b*c) [Again, as * is commutative] = L.H.S. $\therefore a*(b*c) = (c*b)*a$ Therefore, statement (ii) is true.

Question 13:

Consider a binary operation * on N defined as $a * b = a^3 + b^3$. Choose the correct answer.

- A. Is * both associative and commutative?
- B. Is * commutative but not associative?
- C. Is * associative but not commutative?
- D. Is * neither commutative nor associative?

On N, operation *is defined as $a * b = a^3 + b^3$. For all $a, b \in N$ $a * b = a^3 + b^3 = b^3 + a^3 = b * a$

Operation * is commutative.

$$(1*2)*3 = (1^3 + 2^3)*3 = (1+8)*3 = 9*3 = 9^3 + 3^3 = 729 + 27 = 756$$

 $1*(2*3) = 1*(2^3 + 3^3) = 1*(8+27) = 1*35 = 1^3 + 35^3 = 1 + 42875 = 42876$
 $\therefore (1*2)*3 \neq 1*(2*3)$ Operation *is not associative.

Therefore, Operation * is commutative, but not associative. The correct answer is B.

MISCELLANEOUS EXERCISE

Question 1:

Let $f: R \to R$ be defined as f(x) = 10x+7. Find the function $g: R \to R$ such that $gof = fog = I_R$.

Solution:

 $f: R \to R$ is defined as f(x) = 10x+7For one-one: f(x) = f(y) where $x, y \in R$ $\Rightarrow 10x + 7 = 10y + 7$ $\Rightarrow x = y$ $\therefore f$ is one-one.

For onto:

 $y \in R$, Let y = 10x + 7 $\Rightarrow x = \frac{y - 7}{10} \in R$

For any $y \in R$, there exists $x = \frac{y-7}{10} \in R$ such that $f(x) = f\left(\frac{y-7}{10}\right) = 10\left(\frac{y-7}{10}\right) + 7 = y - 7 + 7 = y$ $\therefore f$ is onto.

Thus, f is an invertible function.

Let us define $g: R \to R$ as $g(y) = \frac{y-7}{10}$. Now,

$$gof(x) = g(f(x)) = g(10x+7) = \frac{(10x+7)-7}{10} = \frac{10x}{10} = 10$$

And,

$$fog(y) = f(g(y)) = f\left(\frac{y-7}{10}\right) = 10\left(\frac{y-7}{10}\right) + 7 = y-7 + 7 = y$$

$$\therefore gof = I_R \text{ and } fog = I_R$$

Hence, the required function $g: R \to R$ as $g(y) = \frac{y-7}{10}$.

Question 2:

Let $f: W \to W$ be defined as f(n) = n-1, if is odd and f(n) = n+1, if *n* is even. Show that *f* is invertible. Find the inverse of f. Here, W is the set of all whole numbers.

Solution:

 $f(n) = \begin{cases} n-1, \text{ If } n \text{ is odd} \\ n+1, \text{ If } n \text{ is even} \end{cases}$ For one-one: f(n) = f(m)If *n* is odd and *m* is even, then we will have n-1 = m+1. $\Rightarrow n-m = 2$

Similarly, the possibility of n being even and m being odd can also be ignored under a similar argument.

 \therefore Both *n* and *m* must be either odd or even.

Now, if both n and m are odd, then we have:

f(n) = f(m) $\Rightarrow n-1 = m-1$ $\Rightarrow n=m$

Again, if both n and m are even, then we have:

f(n) = f(m) $\Rightarrow n+1 = m+1$ $\Rightarrow n=m$

 $\therefore f$ is one-one.

For onto:

Any odd number 2r+1 in co-domain N is the image of 2r in domain N and any even number 2r in co-domain N is the image of 2r+1 in domain N.

 $\therefore f$ is onto. f is an invertible function.

Let us define $g: W \to W$ as $f(m) = \begin{cases} m-1, \text{ If } m \text{ is odd} \\ m+1, \text{ If } m \text{ is even} \end{cases}$ When r is odd gof(n) = g(f(n)) = g(n-1) = n-1+1 = n

When r is even

$$gof(n) = g(f(n)) = g(n+1) = n+1-1 = n$$

When *m* is odd fog(n) = f(g(m)) = f(m-1) = m-1+1 = m

When *m* is even fog(m) = f(g(m)) = f(m+1) = m+1-1 = m $\therefore gof = I_{W}$ and $fog = I_{W}$

f is invertible and the inverse of f is given by $f^{-1} = g$, which is the same as f. inverse of f is f itself.

Question 3:

If $f: R \to R$ be defined as $f(x) = x^2 - 3x + 2$, find f(f(x)).

Solution:

$$f: R \to R \text{ is defined as } f'(x) = x^2 - 3x + 2.$$

$$f(f(x)) = f(x^2 - 3x + 2)$$

$$= (x^2 - 3x + 2)^2 - 3(x^2 - 3x + 2) + 2$$

$$= (x^4 + 9x^2 + 4 - 6x^3 - 12x + 4x^2) + (-3x^2 + 9x - 6) + 2$$

$$= x^4 - 6x^3 + 10x^2 - 3x$$

Question 4:

Show that function $f: R \to \{x \in R : -1 < x < 1\}$ be defined by $f(x) = \frac{x}{1+|x|}$, $x \in R$ is one-one and onto function.

Solution:

$$f: R \to \left\{ x \in R : -1 < x < 1 \right\}$$
is defined by $f(x) = \frac{x}{1 + |x|}, x \in R$.

For one-one:

f(x) = f(y) where $x, y \in R$

$$\Rightarrow \frac{x}{1+|x|} = \frac{y}{1+|y|}$$

If x is positive and y is negative,

$$\frac{x}{1+|x|} = \frac{y}{1+|y|}$$
$$\Rightarrow 2xy = x - y$$

Since, x is positive and y is negative,

$$x > y \Longrightarrow x - y > 0$$

2xy is negative.

$$2xy \neq x - y$$

Case of x being positive and y being negative, can be ruled out.

 $\therefore x$ and y have to be either positive or negative.

If x and y are positive,

$$f(x) = f(y)$$

$$\Rightarrow \frac{x}{1+x} = \frac{y}{1+y}$$

$$\Rightarrow x - xy = y - xy$$

$$\Rightarrow x = y$$

$$\therefore f$$
 is one-one.

For onto:

Let $y \in R$ such that -1 < y < 1.

If x is negative, then there exists
$$x = \frac{y}{1+y} \in R$$
 such that

$$f(x) = f\left(\frac{y}{1+y}\right) = \frac{\left(\frac{y}{1+y}\right)}{1+\left|\frac{y}{1+y}\right|} = \frac{\frac{y}{1+y}}{1+\left(\frac{-y}{1+y}\right)} = \frac{y}{1+y-y} = y$$

If *x* is positive, then there exists $x = \frac{y}{1-y} \in R$ such that

$$f(x) = f\left(\frac{y}{1-y}\right) = \frac{\left(\frac{y}{1-y}\right)}{1+\left|\frac{y}{1-y}\right|} = \frac{\frac{y}{1-y}}{1+\left(\frac{y}{1-y}\right)} = \frac{y}{1-y+y} = y$$

 $\therefore f$ is onto.

Hence, f is one-one and onto.

Question 5:

Show that function $f: R \to R$ be defined by $f(x) = x^3$ is injective.

Solution:

 $f: R \to R$ is defined by $f(x) = x^3$

For one-one:

We need to show that x = ySuppose $x \neq y$, their cubes will also not be equal. $\Rightarrow x^3 \neq y^3$

This will be a contradiction to (1).

 $\therefore x = y$. Hence, f is injective.

Question 6:

Give examples of two functions $f: N \to Z$ and $g: Z \to Z$ such that *gof* is injective but \mathcal{G} is not injective.

(Hint: Consider $f(x) = x_{and} g(x) = |x|$)

Solution:

Define $f: N \to Z$ as f(x) = x and $g: Z \to Z$ as g(x) = |x|Let us first show that g is not injective. (-1) = |-1| = 1(1) = |1| = 1 $\therefore (-1) = g(1)$, but $-1 \neq 1$

 $\therefore g$ is not injective.

$$gof: N \to Z$$
 is defined as $gof(x) = g(f(x)) = g(x) = |x|$
 $x, y \in N$ such that $gof(x) = gof(y)$
 $\Rightarrow |x| = |y|$

Since $x, y \in N$, both are positive. $\therefore |x| = |y|$ $\Rightarrow x = y$ $\therefore gof$ is injective.

Question 7:

Given examples of two functions $f: N \to N$ and $g: N \to N$ such that *gof* is onto but *f* is not onto.

(Hint: Consider
$$f(x) = x + 1_{and} g(x) = \begin{cases} x - 1, & \text{if } x > 1 \\ 1, & \text{if } x = 1 \end{cases}$$
)
Solution:

Define $f: N \to Z$ as f(x) = x + 1 and $g: Z \to Z$ as $g(x) = \begin{cases} x - 1, & \text{if } x > 1 \\ 1, & \text{if } x = 1 \end{cases}$

Let us first show that g is not onto.

Consider element 1 in co-domain N. This element is not an image of any of the elements in domain N.

 $\therefore f \text{ is not onto.}$ $g: N \to N \text{ is defined by}$ $gof(x) = g(f(x)) = g(x+1) = x+1-1 = x \qquad [x \in N \Rightarrow x+1>1]$ $\sum_{x \in N} x = 1 \text{ or } f(x) = y$

For $y \in N$, there exists $x = y \in N$ such that gof(x) = y.

 \therefore gof is onto.

Question 8:

Given a non-empty set X, consider P(X) which is the set of all subsets of X.

Define the relation R in P(X) as follows:

For subsets A, B in P(X), ARB if and only if $A \subset B$. Is R an equivalence relation on P(X)? Justify you answer.

Since every set is a subset of itself, ARA for all $A \in P(X)$. $\therefore R$ is reflexive.

Let $ARB \Rightarrow A \subset B$ This cannot be implied to $B \subset A$. If $A = \{1, 2\}$ and $B = \{1, 2, 3\}$, then it cannot be implied that B is related to A. $\therefore R$ is not symmetric.

If ARB and BRC, then $A \subset B$ and $B \subset C$. $\Rightarrow A \subset C$ $\Rightarrow ARC$ $\therefore R$ is transitive.

R is not an equivalence relation as it is not symmetric.

Question 9:

Given a non-empty set X, consider the binary operation *: $P(X) \times P(X) \rightarrow P(X)$ given by $A^*B = A \cap B \ \forall A, B$ in P(X) is the power set of X. Show that X is the identity element for this operation and X is the only invertible element in P(X) with respect to the operation *.

Solution:

 $P(X) \times P(X) \to P(X) \text{ given by } A^*B = A \cap B \ \forall A, B \text{ in } P(X)$ $A \cap X = A = X \cap A \text{ for all } A \in P(X)$ $\Rightarrow A^*X = A = X^*A \text{ for all } A \in P(X)$ $X \text{ is the identity element for the given binary operation }^*.$

An element $A \in P(X)$ is invertible if there exists $B \in P(X)$ such that A * B = X = B * A [As X is the identity element]

Or

 $A \cap B = X = B \cap A$

This case is possible only when A = X = B.

X is the only invertible element in P(X) with respect to the given operation *.

Question 10:

Find the number of all onto functions from the set $\{1, 2, 3, ..., n\}$ to itself.

Solution:

Onto functions from the set $\{1, 2, 3, ..., n\}$ to itself is simply a permutation on *n* symbols 1, 2, 3, ..., n.

Thus, the total number of onto maps from $\{1, 2, 3, ..., n\}$ to itself is the same as the total number of permutations on *n* symbols 1, 2, 3, ..., *n*, which is *n*!.

Question 11:

Let $S = \{a, b, c\}$ and $T = \{1, 2, 3\}$. Find F^{-1} of the following functions F from S to T, if it exists. i. $F = \{(a,3), (b,2), (c,1)\}$ ii. $F = \{(a,2), (b,1), (c,1)\}$

Solution: $S = \{a, b, c\}, T = \{1, 2, 3\}$

i. $F: S \to T$ is defined by $F = \{(a,3), (b,2), (c,1)\}$ $\Rightarrow F(a) = 3, F(b) = 2, F(c) = 1$

Therefore, $F^{-1}: T \to S$ is given by $F^{-1} = \{(3, a), (2, b), (1, c)\}$

- ii. $F: S \to T$ is defined by $F = \{(a,2), (b,1), (c,1)\}$ Since, F(b) = F(c) = 1, F is not one-one.
 - Hence, F is not invertible i.e., F^{-1} does not exists.

Question 12:

Consider the binary operations^{*}: $R \times R \to R$ and $o: R \times R \to R$ defined as $a^*b = |a-b|$ and $aob = a, \forall a, b \in R$. Show that ^{*}is commutative but not associative 0 is associative but not commutative. Further, show that $\forall a, b, c \in R$, $a^*(boc) = (a^*b)o(a^*c)$. [If it is so, we say that the operation ^{*} distributes over the operation 0]. Does 0 distribute over ^{*}? Justify your answer.

Solution:

It is given that *: $R \times R \to R$ and $o: R \times R \to R$ defined as a * b = |a-b| and $aob = a, \forall a, b \in R$. For $a, b \in R$, we have a * b = |a-b| and b * a = |b-a| = |-(a-b)| = |a-b| $\therefore a * b = b * a$ \therefore The operation * is commutative.

$$(1*2)*3 = (|1-2|)*3 = 1*3 = |1-3| = 2$$

 $1*(2*3) = 1*(|2-3|) = 1*1 = |1-1| = 0$

 $\therefore (1*2)*3 \neq 1*(2*3) \qquad \text{where } 1, 2, 3 \in R$

 \therefore The operation * is not associative.

Now, consider the operation θ :

It can be observed that 1o2 = 1 and 2o1 = 2.

 $\therefore 102 \neq 201$ (where $1, 2 \in R$)

 \therefore The operation θ is not commutative.

Let $a, b, c \in R$. Then, we have:

(aob)oc = aoc = aao(boc) = aob = a $\Rightarrow (aob)oc = ao(boc)$

 \therefore The operation θ is associative.

Now, let $a,b,c \in R$, then we have:

$$a^{*}(boc) = a^{*}b = |a-b|$$

 $(a^{*}b)o(a^{*}c) = (|a-b|)o(|a-c|) = |a-b|$

Hence, $a^*(boc) = (a^*b)o(a^*c)$

Now,

$$lo(2*3) = lo(|2-3|) = lo1 = 1$$
$$(lo2)*(lo3) = 1*1 = |1-1| = 0$$

 $\therefore lo(2*3) \neq (lo2)*(lo3)$

where $1, 2, 3 \in R$

 \therefore The operation 0 does not distribute over^{*}.

Question 13:

Given a non - empty set X, let *: $P(X) \times P(X) \to P(X)$ be defined as $A * B = (A - B) \cup (B - A)$, $\forall A, B \in P(X)$. Show that the empty set Φ is the identity for the operation * and all the elements A of P(X) are invertible with $A^{-1} = A$. (Hint: $(A - \Phi) \cup (\Phi - A) = A$ and $(A - A) \cup (A - A) = A * A = \Phi$).

Solution:

It is given that *: $P(X) \times P(X) \rightarrow P(X)$ is defined as $A * B = (A - B) \cup (B - A), \forall A, B \in P(X)$ $A \in P(X)$ then, $A * \Phi = (A - \Phi) \cup (\Phi - A) = A \cup \Phi = A$ $\Phi * A = (\Phi - A) \cup (A - \Phi) = \Phi \cup A = A$ $\therefore A * \Phi = A = \Phi * A$ for all $A \in P(X)$ Φ is the identity for the operation *.

Element $A \in P(X)$ will be invertible if there exists $B \in P(X)$ such that $A^*B = \Phi = B^*A$ [As Φ is the identity element] $A^*A = (A - A) \cup (A - A) = \Phi \cup \Phi = \Phi$ for all $A \in P(X)$.

All the elements A of P(X) are invertible with $A^{-1} = A$.

Question 14:

Define a binary operation * on the set $\{0,1,2,3,4,5\}$ as

 $a+b = \begin{cases} a+b, & \text{if } a+b < 6 \\ a+b-6 & \text{if } a+b \ge 6 \end{cases}$

Show that zero is the identity for this operation and each element $a \neq 0$ of the set is invertible with 6-a being the inverse of a.

Solution:

Let $X = \{0, 1, 2, 3, 4, 5\}$

The operation *is defined as $a+b = \begin{cases} a+b, & \text{if } a+b < 6 \\ a+b-6, & \text{if } a+b \ge 6 \end{cases}$ An element $e \in X$ is the identity element for the operation *, if $a*e = a = e*a \quad \forall a \in X$ For $a \in X$,

 $a * 0 = a + 0 = a \qquad [a \in X \Longrightarrow a + 0 < 6]$ $0 * a = 0 + a = a \qquad [a \in X \Longrightarrow 0 + a < 6]$ $\therefore a * 0 = a = 0 * a \quad \forall a \in X$

Thus, 0 is the identity element for the given operation *.

An element $a \in X$ is invertible if there exists $b \in X$ such that a * b = 0 = b * a.

i.e., $\begin{cases} a+b=0=b+a, & \text{if } a+b<6\\ a+b-6=0=b+a-6 & \text{if } a+b\geq 6 \end{cases}$

 $\Rightarrow a = -b \text{ or } b = 6 - a$

 $X = \{0, 1, 2, 3, 4, 5\}$ and $a, b \in X$. Then $a \neq -b$.

 $\therefore b = 6 - a$ is the inverse of a for all $a \in X$. Inverse of an element $a \in X$, $a \neq 0$ is 6 - a i.e., a - 1 = 6 - a.

Question 15:

Let
$$A = \{-1, 0, 1, 2\}$$
, $B = \{-4, -2, 0, 2\}$ and $f, g : A \to B$ be functions defined by $x^2 - x$, $x \in A$ and $g(x) = 2\left|x - \frac{1}{2}\right| - 1$, $x \in A$.
Are f and g equal?

1

Solution:

It is given that $A = \{-1, 0, 1, 2\}, B = \{-4, -2, 0, 2\}$

Also,
$$f, g: A \to B$$
 is defined by $x^2 - x$, $x \in A$ and $g(x) = 2|x - \frac{1}{2}| - 1$, $x \in A$
 $f(-1) = (-1)^2 - (-1) = 1 + 1 = 2$
 $g(-1) = 2|(-1) - \frac{1}{2}| - 1 = 2(\frac{3}{2}) - 1 = 3 - 1 = 2$
 $\Rightarrow f(-1) = g(-1)$
 $f(0) = (0)^2 - 0 = 0$
 $g(0) = 2|0 - \frac{1}{2}| - 1 = 2(\frac{1}{2}) - 1 = 1 - 1 = 0$
 $\Rightarrow f(0) = g(0)$

$$f(1) = (1)^{2} - 1 = 0$$

$$g(1) = 2\left|1 - \frac{1}{2}\right| - 1 = 2\left(\frac{1}{2}\right) - 1 = 1 - 1 = 0$$

$$\Rightarrow f(1) = g(1)$$

$$f(2) = (2)^{2} - 2 = 2$$

$$g(2) = 2\left|2 - \frac{1}{2}\right| - 1 = 2\left(\frac{3}{2}\right) - 1 = 3 - 1 = 2$$

$$\Rightarrow f(2) = g(2)$$

$$\therefore f(a) = g(a) \quad \forall a \in A$$

Hence, the functions f and g are equal.

Question 16:

Let $A = \{1, 2, 3\}$. Then number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is,

- A. 1
- B. 2
- C. 3 D. 4
- D. ¬

Solution:

The given set is $A = \{1, 2, 3\}$.

The smallest relation containing (1,2) and (1,3) which are reflexive and symmetric but not transitive is given by,

 $R = \{(1,1), (2,2), (3,3), (1,2), (1,3), (2,1), (3,1)\}$

This is because relation R is reflexive as $\{(1,1), (2,2), (3,3)\} \in R$.

Relation *R* is symmetric as $\{(1,2),(2,1)\} \in R$ and $\{(1,3)(3,1)\} \in R$.

Relation *R* is transitive as $\{(3,1),(1,2)\} \in R$ but $(3,2) \notin R$.

Now, if we add any two pairs (3,2) and (2,3) (or both) to relation R, then relation R will become transitive.

Hence, the total number of desired relations is one.

The correct answer is A.

Question 17:

Let $A = \{1, 2, 3\}$. Then number of equivalence relations containing (1, 2) is,

- A. 1
- B. 2
- C. 3
- D. 4

Solution:

The given set is $A = \{1, 2, 3\}$.

The smallest equivalence relation containing (1,2) is given by; $R_1 = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$

Now, we are left with only four pairs i.e., (2,3),(3,2),(1,3) and (3,1).

If we odd any one pair $[say^{(2,3)}]$ to R_1 , then for symmetry we must $add^{(3,2)}$. Also, for transitivity we are required to add (1,3) and (3,1).

Hence, the only equivalence relation (bigger than R_1) is the universal relation.

This shows that the total number of equivalence relations containing (1,2) is two. The correct answer is B.

Question 18:

$$f(x) = \begin{cases} 1, \ x > 0 \\ 0, \ x = 0 \end{cases}$$

Let $f: R \to R$ be the Signum Function defined as [-1, x < 0] and $g: R \to R$ be the greatest integer function given by g(x) = [x], where [x] is greatest integer less than or equal to *x*. Then does *fog* and *gof* coincide in (0,1]?

Solution:

 $f(x) = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$ It is given that $f: R \to R$ be the Signum Function defined as

Also $g: R \to R$ is defined as g(x) = [x], where [x] is greatest integer less than or equal to x. Now let $x \in (0,1]$,

$$[x] = 1$$
 if $x = 1$ and $[x] = 0$ if $0 < x < 1$.

$$\therefore fog(x) = f(g(x)) = f([x]) = \begin{cases} f(1), & \text{if } x = 1 \\ f(0), & \text{if } x \in (0,1) \end{cases} = \begin{cases} 1, & \text{if } x = 1 \\ 0, & \text{if } x \in (0,1) \end{cases}$$
$$gof(x) = g(f(x))$$
$$= g(1) \qquad [x > 0]$$
$$= [1] = 1$$

Thus, when $x \in (0,1)$, we have fog(x) = 0 and gof(x) = 1.

Hence, fog and gof does not coincide in (0,1].

Question 19:

Number of binary operations on the set $\{a,b\}$ are

- A. 10
- B. 16
- C. 20
- D. 8

Solution:

A binary operation * on $\{a,b\}$ is a function from $\{a,b\}\times\{a,b\}\rightarrow\{a,b\}$

i.e., * is a function from $\{(a,a),(a,b),(b,a),(b,b)\} \rightarrow \{a,b\}$

Hence, the total number of binary operations on the set $\{a,b\}$ is $2^4 = 16$. The correct answer is B.

When you learn math in an interesting way, you never forget.

25 Million

Math classes & counting

100K+

Students learning Math the right way

20+ Countries

Present across USA, UK, Singapore, India, UAE & more.

Why choose Cuemath?

"Cuemath is a valuable addition to our family. We love solving puzzle cards. My daughter is now visualizing maths and solving problems effectively!" "Cuemath is great because my son has a one-on-one interaction with the teacher. The instructor has developed his confidence and I can see progress in his work. One-on-one interaction is perfect and a great bonus." "I appreciate the effort that miss Nitya puts in to help my daughter understand the best methods and to explain why she got a problem incorrect. She is extremely patient and generous with Miranda."

- Gary Schwartz

- Kirk Riley

- Barbara Cabrera

Get the Cuemath advantage

Book a FREE trial class