

Come experience the Cuemath methodology and ensure your child stays ahead at math this summer.

Adaptive

Platform

Interactive Visual

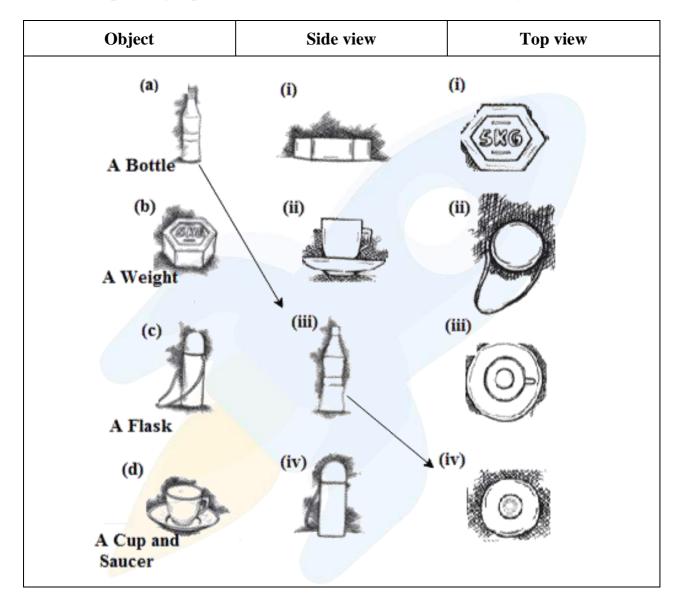
Simulations

Personalized Attention

For Grades 1 - 10

LIVE online classes by trained and certified experts.

Get the Cuemath advantage


Book a FREE trial class

Chapter-10: Visualizing Solid Shapes

Exercise 10.1 (Page 157 of Grade 8 NCERT)

Q1. For each of the given solid, the two views are given. Match for each solid the corresponding top and front views. The first one is done for you.

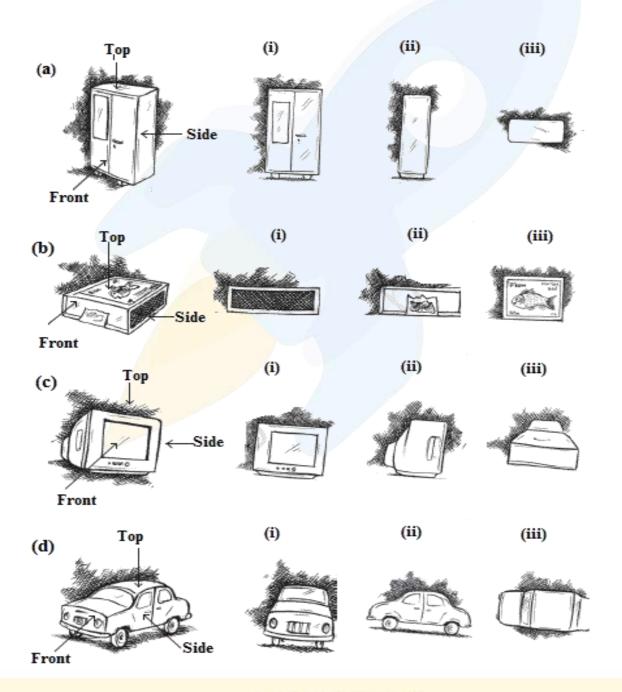
Difficulty level: Easy

What is known:

Object, Side view and Top view

What is unknown:

Matching


Reasoning: Match the correct side view and top view to the object.

Solution:

Object	Side view	Top view
a)	(iii)	(iv)
b)	(i)	(v)
c)	(iv)	(ii)
d)	(v)	(iii)
e)	(ii)	(i)

Q2. For each of the given solid, the three views are given. Identify for each solid the corresponding top, front and side views.

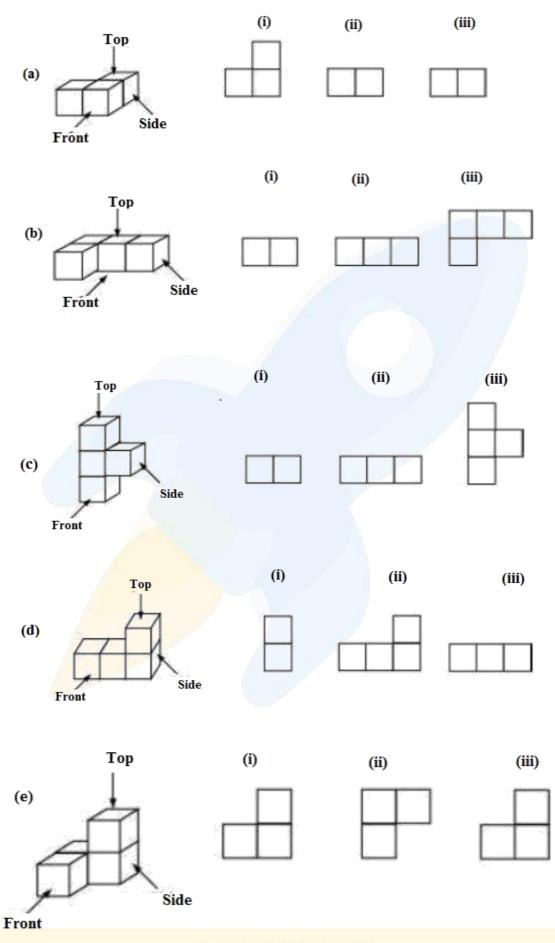
What is known:

Object, Top view, Front view and Side view

What is unknown:

Matching

Reasoning:


Match the correct side view, front view and top view to the object.

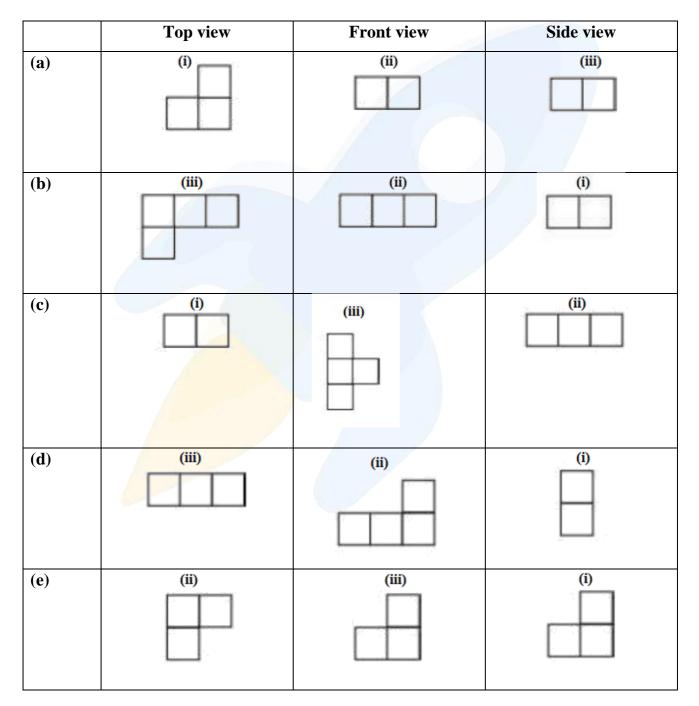
Solution:

Object	Top View	Front View	Side View
a) An almirah			
b) A Match Box	Fish Martin		
c) A Television			
d) A car			

Q3. For each given solid, identify the top view, front view, side view.

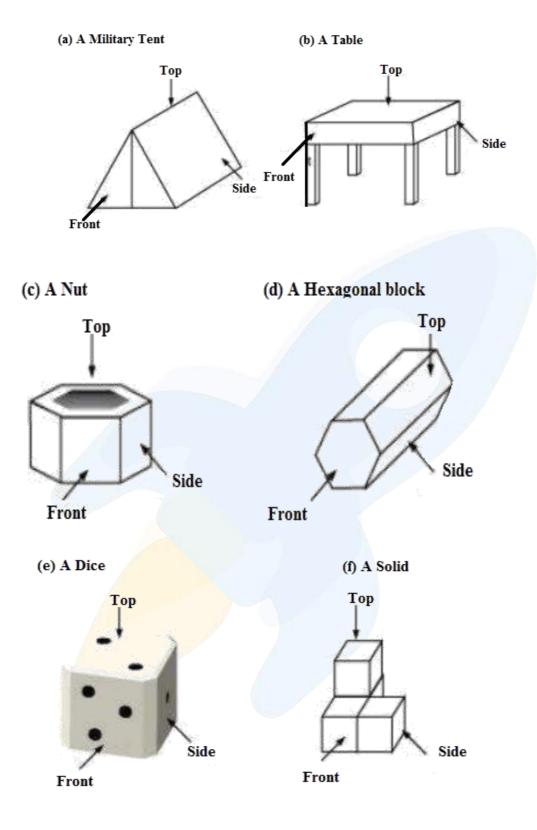
What is known:

Object, Top view, Front view and Side view


What is unknown:

Matching

Reasoning:


Match the correct side view, front view and top view to the object.

Solution:

Q4. Draw the top view, front view and side view of the given objects.

Difficulty level: Easy

What is known:

Object, Top view, Front view and Side view

Reasoning:

Match the correct side view, front view and top view to the object.

Solution:

	Front view	Side view	Top view
(a) A Military tent			
(b) A table			
(c) A Nut			
(d) A Hexagonal Block			
(e) A Dice	••	•	
(f) A Solid			

Exercise 10.3 (Page 166 of Grade 8 NCERT)

Q1. Can a polyhedron have for its faces

(i) 3 triangles? (ii) 4 triangles?

(iii) a square and four triangles?

Difficulty level: Easy

What is known: Shape of faces.

What is unknown: Shape of faces of a polyhedron.

Reasoning:

A polyhedron is made up of polygonal regions which are called its faces; these faces meet at edges which are line segments; and the edges meet at vertices which are points. A polyhedron has at least 4 faces.

Solution:

- (i) No. There are only 3 faces.
- (ii) Yes. A triangular pyramid can be formed with 4 triangles
- (iii) Yes. A square pyramid can be formed with 1 square and 4 triangles
- Q2. Is it possible to have a polyhedron with any given number of faces? (Hint: Think of a pyramid).

Difficulty level:

Easy

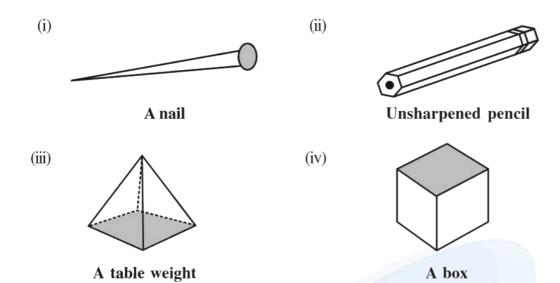
What is known:

Number of faces to form a polyhedron.

What is unknown:

Possibility to form a polyhedron with any given number of faces.

Reasoning:


A polyhedron has at least 4 faces.

Solution:

Yes. It is possible only when the number of faces is 4 or more than 4.

Q3. Which are prisms among the following?

Difficulty level:

Easy

What is known:

A few solid shapes.

What is unknown:

Prism among given shapes.

Reasoning:

A prism is a polyhedron whose base and top are congruent polygons and whose other faces, i.e., lateral faces are parallelograms in shape.

Solution:

(ii) Unsharpened pencil and (iv) A box; because their bases and tops are congruent and lateral faces are parallelograms.

Q4. (i) How are prisms and cylinders alike? (ii) How are pyramids and cones alike?

Difficulty level:

Easy

What is known:

- (i) Prisms and cylinders
- (ii) Pyramids and cones

What is unknown:

- (i) Reason to; prisms and cylinders are alike.
- (ii) Reason to; pyramids and cones are alike.

Reasoning:

A prism is a polyhedron whose base and top are congruent polygons and whose other faces, i.e., lateral faces are parallelograms in shape.

A pyramid is a polyhedron whose base is a polygon (of any number of sides) and whose lateral faces are triangles with a common vertex.

Solution:

- (i) A prism becomes a cylinder as the number of sides of its base becomes larger and larger.
- (ii) A pyramid becomes a cone as the number of sides of its base becomes larger and larger.

Q5. Is a square prism same as a cube? Explain.

Difficulty level:

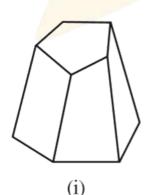
Easy

What is known:

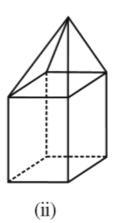
A square prism.

What is unknown:

Whether a square prism is same as a cube.


Reasoning:

A prism is a polyhedron whose base and top are congruent polygons and whose other faces, i.e., lateral faces are parallelograms in shape.


Solution:

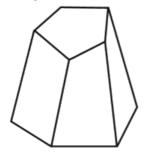
No. It can be a cuboid, if the lateral faces are rectangles and bases are squares.

Q6. Verify Euler's formula for these solids.

Difficulty level: Easy

Two solid figures.

What is unknown:


Verification of Euler's formula

Reasoning:

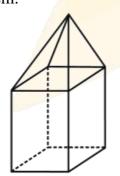
According to Euler's formula in any polyhedron, F+V-E=2, where 'F' stands for number of faces, 'V' stands for number of vertices and 'E' stands for number of edges.

Solution:

(i) In the figure we can see that top and bottom are pentagon.

Number of faces, F = 7Number of edges, E = 15Number of vertices, V = 10

```
Let's verify Euler's formula,


F+V-E=7+10-15

=17-15

=2

Verified.
```

(ii) In the figure we can see that its top is a square pyramid and bottom is a square prism.

Number of faces, F = 9Number of edges, E = 16Number of vertices, V = 9

```
Let's verify Euler's formula,

F+V-E=9+9-16

=18-16

=2

Verified.
```


Q7. Using Euler's formula find the unknown.

Faces	?	5	20
Vertices	6	?	12
Edges	12	9	?

Difficulty level:

Easy

What is known:

A few faces, vertices and edges.

What is unknown:

Faces, vertices and edges.

Reasoning:

According to Euler's formula in any polyhedron, F + V - E = 2, where 'F' stands for number of faces, 'V' stands for number of vertices and 'E' stands for number of edges.

Solution:

(i) Number of faces, F = ?Number of edges, E = 12Number of vertices, V = 6

According to Euler's formula in any polyhedron,

F + V - E = 2 F + 6 - 12 = 2 F - 6 = 2 F = 2 + 6F = 8

(ii) Number of faces, F = 5Number of edges, E = 9Number of vertices, V = ?

According to Euler's formula in any polyhedron,

F + V - E = 2 5 + V - 9 = 2 V - 4 = 2 V = 2 + 4V = 6

(iii) Number of faces, F = 20Number of edges, E = ?Number of vertices, V = 12

According to Euler's formula in any polyhedron,

F + V - E = 2 20 + 12 - E = 2 32 - E = 2 E = 32 - 2E = 30

Faces	8	5	20
Vertices	6	6	12
Edges	12	9	30

Q8. Can a polyhedron have 10 faces, 20 edges and 15 vertices?

Difficulty level:

Easy

What is known:

Number of faces, vertices and edges.

What is unknown:

Whether a polyhedron can have given faces, vertices and edges.

Reasoning:

According to Euler's formula in any polyhedron, F + V - E = 2, where 'F' stands for number of faces, 'V' stands for number of vertices and 'E' stands for number of edges.

Solution:

Number of faces, F = 10Number of edges, E = 20Number of vertices, V = 15

Let's verify Euler's formula, F+V-E = 10+20-15 = 30-15= 15

As we know that; according to Euler's formula in any polyhedron, F+V-E=2Hence,

No. A polyhedron cannot have 10 faces, 20 edges and 15 vertices.

When you learn math in an interesting way, you never forget.

25 Million

Math classes & counting

100K+

Students learning Math the right way

20+ Countries

Present across USA, UK, Singapore, India, UAE & more.

Why choose Cuemath?

"Cuemath is a valuable addition to our family. We love solving puzzle cards. My daughter is now visualizing maths and solving problems effectively!" "Cuemath is great because my son has a one-on-one interaction with the teacher. The instructor has developed his confidence and I can see progress in his work. One-on-one interaction is perfect and a great bonus." "I appreciate the effort that miss Nitya puts in to help my daughter understand the best methods and to explain why she got a problem incorrect. She is extremely patient and generous with Miranda."

- Gary Schwartz

- Kirk Riley

- Barbara Cabrera

Get the Cuemath advantage

Book a FREE trial class