

Get better at Math.
Get better at
everything.

Come experience the Cuemath methodology and ensure your child stays ahead at math this summer.

Adaptive Platform

Interactive Visual Simulations

Personalized Attention

For Grades 1 - 10

LIVE online classes by trained and certified experts.

Get the Cuemath advantage

Book a FREE trial class

<u>Chapter – 16: Playing with Numbers</u>

Exercise 16.1 (Page 255 of Grade8 NCRT)

Q1. Find the values of the letters in the following and give reasons for the steps involved.

$$\frac{3 \text{ A}}{+2 5}$$

Difficulty Level: Easy

What is the known/given?

Addition operation of two numbers

What is unknown?

Value of alphabets i.e. A and B.

Reasoning:

Each letter in the puzzle must stand for just one digit. Each digit must be represented by just one letter.

Solution:

The addition of A and 5 is giving 2 i.e., a number whose one's digit is 2. This is possible only when digit A is 7. In that case, the addition of A (7) and 5 will give 12 and thus, 1 will be the carry for the next step. In the next step,

$$1 + 3 + 2 = 6$$

Therefore, the addition is as follows.

$$\frac{3}{6}$$
 $\frac{7}{6}$

Clearly, B is 6.

Hence, A and B are 7 and 6 respectively.

Q2. Find the values of the letters in the following and give reasons for the steps involved.

$$\begin{array}{c|cccc}
4 & A \\
+ & 9 & 8 \\
\hline
C & B & 3
\end{array}$$

Difficulty Level: Easy

What is the known/given?

Addition operation of two numbers

What is unknown?

Value of alphabets i.e. A, B and C.

Reasoning:

Each letter in the puzzle must stand for just one digit. Each digit must be represented by just one letter.

Solution:

The addition of A and 8 is giving 3 i.e., a number whose ones digit is 3. This is possible only when digit A is 5. In that case, the addition of A and 8 will give 13 and thus, 1 will be the carry for the next step. In the next step,

$$1 + 4 + 9 = 14$$

Therefore, the addition is as follows.

$$\frac{4}{9} \frac{5}{8}$$

Clearly, B and C are 4 and 1 respectively.

Hence, A, B, and C are 5, 4, and 1 respectively.

Q3: Find the values of the letters in the following and give reasons for the steps involved.

$$\begin{array}{c}
1 \text{ A} \\
\times \text{ A} \\
\hline
9 \text{ A}
\end{array}$$

Difficulty Level: Medium

What is the known/given?

Multiplication operation of two numbers

What is unknown?

Value of alphabet i.e. A.

Reasoning:

Each letter in the puzzle must stand for just one digit. Each digit must be represented by just one letter.

Solution:

The multiplication of A and A gives a number whose one's digit is A again. Hence, A must be 1 or 6.

Let A be 1,

Therefore, $A \times A = 1 \times 1 = 1 \neq 9$

So, this is not possible for any value of A.

Hence, A must be 6 only.

For A = 6, we get $A \times A = 6 \times 6 = 36$

and 3 will be a carry for the next step.

$$\therefore$$
 A×1=6×1+3(Carried on) = 9

$$\frac{\times 6}{96}$$

Hence, the values of A=6.

Q4: Find the values of the letters in the following and give reasons for the steps involved.

$$\frac{+3}{6} \frac{7}{A}$$

Difficulty Level: Medium

What is the known/given?

Addition operation of two numbers

What is unknown?

Value of alphabets i.e. A and B.

Reasoning:

Each letter in the puzzle must stand for just one digit. Each digit must be represented by just one letter.

Solution:

The addition of A and 3 is giving 6. There can be two cases.

(1) First step is not producing a carry

In that case, A comes to be 3 as 3 + 3 = 6. Considering the first step in which the addition of B and 7 is giving A (i.e., 3), B should be a number such that the unit's digit of this addition comes to be 3. It is possible only when B = 6. In this case, B = 6 + 7 = 13. However, A is a single digit number. Hence, it is not possible.

(2) First step is producing a carry

In that case, A comes to be 2 as 1 + 2 + 3 = 6. Considering the first step in which the addition of B and 7 is giving A (i.e., 2), B should be a number such that the unit's digit of this addition comes to be 2. It is possible only when B = 5 and 5 + 7 = 12.

$$\begin{array}{rrr}
2 & 5 \\
+ 3 & 7 \\
\hline
6 & 2
\end{array}$$

Hence, the values of A and B are 2 and 5 respectively.

Q5: Find the values of the letters in the following and give reasons for the steps involved.

$$\begin{array}{c}
A & B \\
\times & 3 \\
\hline
CAB
\end{array}$$

Difficulty Level: Medium

What is the known/given?

Multiplication operation of two numbers

What is unknown?

Value of alphabets i.e. A, B and C.

Reasoning:

Each letter in the puzzle must stand for just one digit. Each digit must be represented by just one letter.

Solution:

The multiplication of 3 and B gives a number whose one's digit is B again. Hence, B must be 0 or 5.

Let B be 5.

Multiplication of first step = $3 \times 5 = 15$ 1 will be a carry for the next step.

We have, $3 \times A + 1 = CA$

This is not possible for any value of A.

Hence, B must be 0 only. If B = 0, then there will be no carry for the next step. We should obtain, $3 \times A = CA$

That is, the one's digit of $3 \times A$ should be A. This is possible when A=5 or 0.

However, A cannot be 0 as AB is a two-digit number.

Therefore, A must be 5 only. The multiplication is as follows.

$$5 0$$

$$\times 3$$

$$150$$

Hence, the values of A, B, and C are 5, 0, and 1 respectively.

Q6: Find the values of the letters in the following and give reasons for the steps involved.

$$\begin{array}{c}
A & B \\
\times & 5 \\
\hline
CAB
\end{array}$$

Difficulty Level: Medium

What is the known/given?

Multiplication operation of two numbers

What is unknown?

Value of alphabets i.e. A, B and C.

Reasoning:

Each letter in the puzzle must stand for just one digit. Each digit must be represented by just one letter.

Solution:

The multiplication of B and 5 is giving a number whose one's digit is B again. This is possible when B=5 or B=0 only.

In case of B = 5, the product, $B \times 5 = 5 \times 5 = 25$ 2 will be a carry for the next step.

We have, $5 \times A + 2 = CA$, which is possible for A=2 or 7 The multiplication is as follows.

If
$$B = 0$$
,
 $B \times 5 = B$
 $0 \times 5 = 0$

There will not be any carry in this step.

In the next step, $5 \times A = CA$

It can happen only when A = 5 or A = 0

However, A cannot be 0 as AB is a two-digit number.

Hence, A can be 5 only. The multiplication is as follows. Hence, there are 3 possible values of A, B and C.

- (i) 5, 0, and 2 respectively
- (ii) 2, 5, and 1 respectively
- (iii) 7, 5, and 3 respectively

Q7: Find the values of the letters in the following and give reasons for the steps involved.

$$\begin{array}{ccc}
A & B \\
\times & 6 \\
\hline
B & B & B
\end{array}$$

Difficulty Level: Medium

What is the known/given?

Multiplication operation of two numbers

What is unknown?

Value of alphabets i.e. A and B.

Reasoning:

Each letter in the puzzle must stand for just one digit. Each digit must be represented by just one letter.

Solution:

The multiplication of 6 and B gives a number whose one's digit is B again. It is possible only when B = 0, 2, 4, 6, or 8

If B = 0, then the product will be 0. Therefore, this value of B is not possible.

If B = 2, then $B \times 6 = 12$ and 1 will be a carry for the next step.

 $6A+1=BB=22 \Rightarrow 6A=21$ and hence, any integer value of A is not possible.

If B = 6, then $B \times 6 = 36$ and 3 will be a carry for the next step.

 $6A + 3 = BB = 66 \Rightarrow 6A = 63$ and hence, any integer value of A is not possible.

If B = 8, then $B \times 6 = 48$ and 4 will be a carry for the next step.

 $6A + 4 = BB = 88 \Rightarrow 6A = 84$ and hence, A = 14. However, A is a single digit number.

Therefore, this value of A is not possible.

If B = 4, then $B \times 6 = 24$ and 2 will be a carry for the next step.

$$6A + 2 = BB = 44 \Rightarrow 6A = 42$$
 and hence, $A = 7$

The multiplication is as follows.

$$7 \quad 4$$

$$\times \quad 6$$

$$4 \quad 4 \quad 4$$

Hence, the values of A and B are 7 and 4 respectively.

Q8: Find the values of the letters in the following and give reasons for the steps involved.

$$\begin{array}{c|c}
A & 1 \\
+ 1 & B \\
\hline
B & 0
\end{array}$$

Difficulty Level: Medium

What is the known/given?

Addition operation of two numbers

What is unknown?

Value of alphabets i.e. A and B.

Reasoning:

Each letter in the puzzle must stand for just one digit. Each digit must be represented by just one letter.

Solution:

The addition of 1 and B is giving 0 i.e., a number whose one's digits is 0. This is possible only when digit B is 9. In that case, the addition of 1 and B will give 10 and thus, 1 will be the carry for the next step. In the next step,

$$1 + A + 1 = B$$

Clearly, A is 7 as
$$1 + 7 + 1 = 9 = B$$

Therefore, the addition is as follows.

$$\frac{7}{9}$$
 $\frac{1}{9}$

Hence, the values of A and B are 7 and 9 respectively.

Q9: Find the values of the letters in the following and give reasons for the steps involved.

Difficulty Level: Medium

What is the known/given?

Addition operation of two numbers

What is unknown?

Value of alphabets i.e. A and B.

Reasoning:

Each letter in the puzzle must stand for just one digit. Each digit must be represented by just one letter.

Solution:

The addition of B and 1 is giving 8 i.e., a number whose one's digits is 8. This is possible only when digit B is 7. In that case, the addition of B and 1 will give 8. In the next step,

$$A + B = 1$$

Clearly, A is 4.

4 + 7 = 11 and 1 will be a carry for the next step. In the next step,

$$1 + 2 + A = B$$

$$1+2+4=7$$

Therefore, the addition is as follows.

Hence, the values of A and B are 4 and 7 respectively.

Q10: Find the values of the letters in the following and give reasons for the steps involved.

Difficulty Level: Medium

What is the known/given?

Addition operation of two numbers

What is unknown?

Value of alphabets i.e. A and B.

Reasoning:

Each letter in the puzzle must stand for just one digit. Each digit must be represented by just one letter.

Solution:

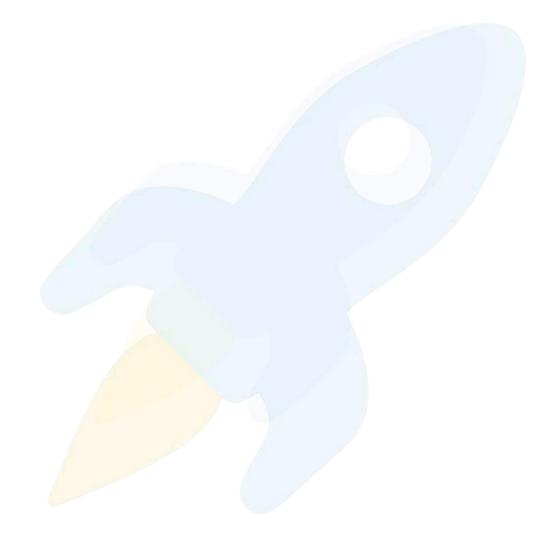
The addition of A and B is giving 9 i.e., a number whose ones digits is 9. The sum can be 9 only as the sum of two single digit numbers cannot be 19. Therefore, there will not be any carry in this step.

In the next step, 2 + A = 0

It is possible only when A = 8

2 + 8 = 10 and 1 will be the carry for the next step.

$$1 + 1 + 6 = A$$



Clearly, A is 8. We know that the addition of A and B is giving 9. As A is 8, therefore, B is 1.

Therefore, the addition is as follows.

$$\begin{array}{r}
 128 \\
 + 681 \\
 \hline
 809
 \end{array}$$

Hence, the values of A and B are 8 and 1 respectively.

<u>Chapter – 16: Playing with Numbers</u>

Exercise 16.2 (Page 260 of NCERT Grade 8)

Q1: If 21y5 is a multiple of 9, where y is a digit, what is the value of y?

Difficulty Level: Easy

What is the known/given?

A puzzled number

What is unknown?

Value of the alphabet i.e. y.

Reasoning:

If the sum of all the digits of a number is equal to 9, then the number is a multiple of 9.

Solution:

If a number is a multiple of 9, then the sum of its digits will be divisible by 9.

Sum of digits of 21y5 = 2 + 1 + y + 5 = 8 + y

Hence, 8 + y should be a multiple of 9.

This is possible when 8+y is any one of these numbers 0, 9, 18, 27, and so on ...

However, since y is a single digit number, this sum can be 9 only.

$$8 + y = 9$$

$$y = 9 - 8$$

$$y = 1$$

Therefore, y should be 1 only.

Q2: If 31z5 is a multiple of 9, where z is a digit, what is the value of z? You will find that there are two answers for the last problem. Why is this so?

Difficulty Level: Easy

What is the known/given?

A puzzled number

What is unknown?

Value of the alphabet i.e. y.

Reasoning:

If the sum of all digits of a number is equal to 9, then the number is a multiple of 9.

Solution:

If a number is a multiple of 9, then the sum of its digits will be divisible by 9.

Sum of digits of 31z5 = 3+1+z+5=9+z

Hence, 9+z should be a multiple of 9.

This is possible, when 9+z is any one of these numbers 0, 9, 18, 27, and so on ...

However, since z is a single digit number, this sum can be either 9 or 18.

$$9 + z = 9$$

$$z = 9 - 9$$

$$z = 0$$

Therefore, z should be either 0 or 9.

Q3: If 24x is a multiple of 3, where x is a digit, what is the value of x? (Since 24x is a multiple of 3, its sum of digits 6+x is a multiple of 3; so 6+x is one of these numbers: 0, 3, 6, 9, 12, 15, 18.... But since x is a digit, it can only be that 6+x=6 or 9 or 12 or 15. Therefore, x=0 or 3 or 6 or 9. Thus, x can have any of four different values)

Difficulty Level: Easy

What is the known/given?

A puzzled number

What is unknown?

Value of the alphabet i.e. x.

Reasoning:

If the sum of the digits of a number is divisible by 3, then the given number is a multiple of 3.

Solution:

Since 24x is a multiple of 3, the sum of its digits is a multiple of 3.

Sum of digits of 24x = 2 + 4 + x = 6 + x

Hence, 6 + x is a multiple of 3.

This is possible when 6+x is any one of these numbers 0, 3, 6, 9, and so on ...

For,
$$6 + x = 0 \Rightarrow x = 0 - 6 = -6$$

For,
$$6 + x = 3 \Rightarrow x = 3 - 6 = -3$$

For,
$$6 + x = 6 \implies x = 6 - 6 = 0$$

For,
$$6 + x = 9 \Rightarrow x = 9 - 6 = 3$$

For,
$$6 + x = 12 \Rightarrow x = 12 - 6 = 6$$
...soon

Since x is a single digit number, the sum of the digits can be 6 or 9 or 12 or 15 and thus, the value of x comes to 0 or 3 or 6 or 9 respectively.

Thus, x can have its value as any of the four different values 0, 3, 6, or 9.

Q4: If 31z5 is a multiple of 3, where z is a digit, what might be the values of z?

Difficulty Level: Easy

What is the known/given?

A puzzled number

What is unknown?

Value of the alphabet i.e. z.

Reasoning:

If sum of the digits of a number is divisible by 3, then the given number is a multiple of 3.

Solution:

Since 31z5 is a multiple of 3, the sum of its digits will be a multiple of 3.

That is, 3+1+z+5=9+z is a multiple of 3.

This is possible when 9+z is any one of 0, 3, 6, 9, 12, 15, 18, and so on ...

For,
$$9 + z = 0 \Rightarrow z = 0 - 9 = -9$$

For,
$$9 + z = 3 \Rightarrow z = 3 - 9 = -6$$

For,
$$9 + z = 6 \implies z = 6 - 9 = -3$$

For,
$$9 + z = 9 \implies z = 9 - 9 = 0$$

For,
$$9 + z = 12 \Rightarrow z = 12 - 9 = 3$$

For,
$$9 + z = 15 \Rightarrow z = 15 - 9 = 6$$

For,
$$9 + z = 18 \Rightarrow z = 18 - 9 = 9$$

Since z is a single digit number, the value of 9+z can only be 9 or 12 or 15 or 18. and thus, the value of z comes to 0 or 3 or 6 or 9 respectively.

Thus, z can have its value as any one of the four different values 0, 3, 6, or 9.

When you learn math in an interesting way, you never forget.

25 Million

Math classes & counting

100K+

Students learning Math the right way

20+ Countries

Present across USA, UK, Singapore, India, UAE & more.

Why choose Cuemath?

"Cuemath is a valuable addition to our family. We love solving puzzle cards. My daughter is now visualizing maths and solving problems effectively!"

"Cuemath is great because my son has a one-on-one interaction with the teacher. The instructor has developed his confidence and I can see progress in his work. One-on-one interaction is perfect and a great bonus."

"I appreciate the effort that miss Nitya puts in to help my daughter understand the best methods and to explain why she got a problem incorrect. She is extremely patient and generous with Miranda."

- Gary Schwartz

- Kirk Riley

- Barbara Cabrera

Get the Cuemath advantage

Book a FREE trial class