

Come experience the Cuemath methodology and ensure your child stays ahead at math this summer.

Adaptive

Platform

Interactive Visual

Simulations

Personalized Attention

For Grades 1 - 10

LIVE online classes by trained and certified experts.

Get the Cuemath advantage

Book a FREE trial class

Chapter-15: Probability

Exercise 15.1 (Page 283 of Grade 9 NCERT Textbook)

Q1. In a cricket match, a batswoman hits a boundary 6 times out of 30 balls she plays. Find the probability that she did not hit a boundary.

Difficulty Level:

Easy

Known/given:

Total number of balls played and number of times the batswoman hits the boundary.

Unknown:

Probability of the batswoman not hitting a boundary.

Reasoning:

Probability of an event, $P(E) = \frac{\text{Number of instances that event takes place}}{\text{Total number of instances}}$

Solution:

Number of balls played = 30

Number of balls the batswoman hits boundary = 6

Number of balls the batswoman does not hit a boundary = 30 - 6 = 24

Probability of the batswoman not hitting a boundary = $\frac{\text{does not hit the boundary}}{\text{Total number of balls played}}$ $= \frac{24}{30} = \frac{4}{5}$

Q2. 1500 families with 2 children were selected randomly, and the following data were recorded:

Number of girls in a family	2	1	0
Number of families	475	814	211

Compute the probability of a family, chosen at random, having (i) 2 girls (ii) 1 girl (iii) No girl

Also check whether the sum of these probabilities is 1.

Known/given:

Number of families having 2 girl child,1 girl child, no girl child and the total number of families.

Unknown:

Probability of selecting family having 2 girl child,1 girl child, no girl child and whether sum of these probabilities is 1.

Reasoning:

Probability of selecting a family having 2 girls, 1 girl and no girl will be the ratio of the number of girls in the family and the total number of families.

Probability of an event, $P(E) = \frac{\text{Number of instances that event takes place}}{\text{Total number of instances}}$

Solution:

Total number of families = 1500 Number of families having 2 girls = 475 Number of families having 1 girl = 814 Number of families having no girl = 211

Probability of family having 2 girls, $P_1 = \frac{\text{Family having 2 girls}}{\text{Total number of families}}$

Therefore, $P_1 = \frac{475}{1500} = \frac{19}{60}$

Probability of family having 1 girl, $P_2 = \frac{\text{Family having 1 girl}}{\text{Total number of families}}$

Therefore, $P_2 = \frac{814}{1500} = \frac{407}{750}$

Probability of family having no girl, $P_3 = \frac{\text{Family having no girl}}{\text{Total number of families}}$

Therefore, $P_3 = \frac{211}{1500}$

Sum of all the three probabilities $= P_1 + P_2 + P_3$

$$= \frac{475}{1500} + \frac{814}{1500} + \frac{211}{1500}$$
$$= \frac{475 + 814 + 211}{1500}$$
$$= \frac{1500}{1500}$$
$$= 1$$
WWW.CUEMATH.C

OM

Q3. Refer to Example 5, Section 14.4, Chapter 14. Find the probability that a student of the class was born in August.

Example 5, Section 14.4, Chapter 14: In a particular section of Class IX, 40 students were asked about the months of their birth and the following graph was prepared for the data so obtained:

Difficulty Level:

Medium

Known/given:

Total number of students in class and number of students born in each month.

Unknown:

Probability of students born in the month of August.

Reasoning:

The probability that student was born in a certain month is given by the ratio of students born in a certain month and the total number of students born.

Probability of an event, $P(E) = \frac{\text{Number of instances that event takes place}}{\text{Total number of instances}}$

Solution:

The total number of students in class = 40 Number of students born in August = 6 Probability of students born in August = $\frac{\text{Number of students born in August}}{\text{Total number of students in class}}$ = $\frac{6}{40}$ = $\frac{3}{20}$ WWW.CUEMATH.COM

Q4. Three coins are tossed simultaneously 200 times with the following frequencies of different outcomes:

Outcome	3 heads	2 heads	1 head	No head
Frequency	23	72	77	28

If the three coins are simultaneously tossed again, compute the probability of 2 heads coming up.

Difficulty Level:

Medium

Known/given:

Total number of tosses and frequencies of different outcomes.

Unknown:

Probability of 2 heads coming up when three coins are tossed simultaneously.

Reasoning:

Probability of 2 heads coming up when three coins are tossed simultaneously is given by the ratio of the number of times a particular outcome occurs and the total number of tosses.

Probability of an event, $P(E) = \frac{\text{Number of instances that event takes place}}{\text{Total number of instances}}$

Solution:

Q5. An organisation selected 2400 families at random and surveyed them to determine a relationship between income level and the number of vehicles in a family. The information gathered is listed in the table below:

Monthly income	Vehicles per family					
(in ₹)	0	1	2	Above 2		
Less than 7000	10	160	25	0		
7000 - 10000	0	305	27	2		
10000 - 13000	1	535	29	1		
13000 - 16000	2	469	59	25		
16000 or more	1	579	82	88		

Suppose a family is chosen. Find the probability that the family chosen is

- i) earning \gtrless 10000 13000 per month and owning exactly 2 vehicles.
- ii) earning ₹ 16000 or more per month and owning exactly 1 vehicle.
- iii) earning less than ₹ 7000 per month and does not own any vehicle.
- iv) earning \gtrless 13000 16000 per month and owning more than 2 vehicles.
- v) owning not more than 1 vehicle.

Difficulty Level:

Medium

Known/given:

Family monthly income and vehicles per family.

Unknown:

Probability of family

- i) earning $\gtrless 10000 13000$ per month and owning exactly 2 vehicles.
- ii) earning ₹16000 or more per month and owning exactly 1 vehicle.
- iii) earning less than ₹7000 per month and does not own any vehicle.
- iv) earning ₹13000 16000 per month and owning more than 2 vehicles.
- v) owning not more than 1 vehicle.

Reasoning:

The probability of certain event is given by the ratio of occurrence of a particular event by the total number of events.

Probability of having vehicle based on the earnings $=\frac{\text{Number of vehicles per family}}{\text{Total number of families}}$

Total number of families = 2400

Family earning ₹10000 – 13000 per month and owning exactly 2 vehicles = 29

Family earning ₹16000 or more per month and owning exactly 1 vehicle = 579

Family earning less than ₹7000 per month and does not own any vehicle = 10

Family earning $\gtrless 13000 - 16000$ per month and owning more than 2 vehicles = 25

Family owning not more than 1 vehicle =10+0+1+2+1+160+305+535+469+579 = 2062

- (i) Probability of family earning ₹ 10000 13000 per month and owning exactly 2 vehicles = $\frac{29}{2400}$
- (ii) Probability of family earning ₹ 16000 or more per month and owning exactly 1 vehicle = $\frac{579}{2400}$
- (iii) Probability of family earning less than ₹ 7000 per month and does not own any vehicle $=\frac{10}{2400} = \frac{1}{240}$
- (iv) Probability of family earning ₹ 13000 16000 per month and owning more than 2 vehicles $=\frac{25}{2400} = \frac{1}{96}$
- (v) Probability of family owning not more than 1 vehicle $=\frac{2062}{2400}=\frac{1031}{1200}$

Q6. Refer to Table 14.7, Chapter 14.

- (i) Find the probability that a student obtained less than 20% in the mathematics test.
- (ii) Find the probability that a student obtained marks 60 or above.

Table 14.7, Chapter 14, Example 7: A teacher wanted to analyse the performance of two sections of students in a mathematics test of 100 marks. Looking at their performances, she found that a few students got under 20 marks and a few got 70 marks or above. So, she decided to group them into intervals of varying sizes as follows: $0 - 20, 20 - 30, \ldots, 60 - 70, 70 - 100$. Then she formed the following table:

Marks	Number of students
0-20	7
20-30	10
30 - 40	10
40 - 50	20
50 - 60	20
60 - 70	15
70 – above	8
Total	90

Known/given:

Marks in different range and respective students.

Unknown:

Probability of students obtained

- (i) less than 20% in math.
- (ii) 60 marks or above.

Reasoning:

The probability of certain event is given by the ratio of occurrence of a particular event by the total number of events.

Probability of students in range of marks $=\frac{\text{Number of students in range of marks}}{\text{Total number of students}}$

Solution:

Total number of students = 90 Number of students obtained less than 20% marks = 7 Number of students obtained 60 marks or above = 15+8=23

- (i) Probability of students obtained less than 20% marks $=\frac{7}{90}$
- (ii) Probability students obtained 60 marks or above $=\frac{23}{90}$
- **Q7**. To know the opinion of the students about the subject statistics, a survey of 200 students was conducted. The data is recorded in the following table.

Opinion	Number of students
like	135
dislike	65

Find the probability that a student chosen at random

(i) likes statistics, (ii) does not like it.

Difficulty Level:

Medium

Known/given:

Number of students who like statistics and who do not like statistics.

Unknown:

Probability of the number of students

- (i) like statistics.
- (ii) do not like statistics.

The probability of certain event is given by the ratio of occurrence of a particular event by the total number of events.

Probability of students like/dislike statistics $=\frac{\text{Number of students like/dislike statistics}}{\text{Total number of students}}$

Solution:

Total number of students = 200 Number of students who like statistics = 135 Number of students who dislike statistics = 65

- (i) Probability of students who like statistics $=\frac{135}{200}=\frac{27}{40}$
- (ii) Probability students who dislike statistics $=\frac{65}{200}=\frac{13}{40}$
- **Q8**. Refer to Q.2, Exercise 14.2. What is the empirical probability that an engineer lives:
 - i) less than 7 km from her place of work?
 - ii) more than or equal to 7 km from her place of work?
 - iii) within $\frac{1}{2}$ km from her place of work.

Q2, Exercise 14.2: The distance (in km) of 40 engineers from their residence to their place of work were found as follows:

5	3	10	20	25	11	13	7	12	31
19	10	12	17	18	11	32	17	16	2
7	9	7	8	3	5	12	15	18	3
12	14	2	9	6	15	15	7	6	12

Difficulty Level:

Medium

Known/given:

Number of engineers and distance of their workplace to the residence.

Unknown:

The empirical probability that an engineer lives:

- (i) less than 7 km from her place of work?
- (ii) more than or equal to 7 km from her place of work?
- (iii) within $\frac{1}{2}$ km from her place of work.

The probability of certain event is given by the ratio of occurrence of a particular event by the total number of events.

Probability of an event, $P(E) = \frac{\text{Number of instances that event takes place}}{\text{Total number of instances}}$

Solution:

Total number of engineers = 40

Number of engineers who live less than 7 km from their place of work = 9 Number of engineers who live more than or equal to 7 km from their workplace = 31

Number of engineers who live within $\frac{1}{2}$ km from their place of work = 0

- (i) Probability of an engineer who lives less than 7 km from their place of work $=\frac{9}{40}$
- (ii) Probability of an engineer who lives more than or equal to 7 km from their place of work $=\frac{31}{40}$
- (iii) Probability of an engineer who lives within $\frac{1}{2}$ km from their place of work

 $=\frac{0}{40}=0$

- Q11. Eleven bags of wheat flour, each marked 5 kg, actually contained the following weights of flour (in kg):
 - 4.97 5.05 5.08 5.03 5.00 5.06 5.08 4.98 5.04 5.07 5.00

Find the probability that any of these bags chosen at random contains more than 5 kg of flour.

Difficulty Level:

Easy

Known/given:

Number of bags of specific weights.

Unknown:

Probability of any of the bags containing more than 5 kg of flour.

Reasoning:

The probability of certain event is given by the ratio of occurrence of a particular event by the total number of events.

Probability of an event, $P(E) = \frac{\text{Number of instances that event takes place}}{\text{Total number of instances}}$

Total number of bags = 11 Number of bags containing more than 5 kg of flour = 7 Probability of a bag containing more than 5 kg of flour = $\frac{7}{11}$

Q12. In Q.5, Exercise 14.2, you were asked to prepare a frequency distribution table, regarding the concentration of Sulphur dioxide in the air in parts per million of a certain city for 30 days. Using this table, find the probability of the concentration of Sulphur dioxide in the interval 0.12 - 0.16 on any of these days.

Q5, Exercise 14.2: A study was conducted to find out the concentration of Sulphur dioxide in the air in parts per million (ppm) of a certain city. The data obtained for 30 days is as follows:

0.03	0.08	0.08	0.09	0.04	0.17
0.16	0.05	0.02	0.06	0.18	0.20
0.11	0.08	0.12	0.13	0.22	0.07
0.08	0.01	0.10	0.06	0.09	0.18
0.11	0.07	0.05	0.07	0.01	0.04

Difficulty Level:

Easy

Known/given:

Concentration of Sulphur dioxide for 30 days.

Unknown:

Probability of the concentration of Sulphur dioxide in the interval of 0.12 - 0.16.

Reasoning:

The probability of certain event is given by the ratio of occurrence of a particular event by the total number of events.

Probability of an event, $P(E) = \frac{\text{Number of instances that event takes place}}{\text{Total number of instances}}$

Solution:

Total number of days = 30 Number of days on which concentration was in the interval 0.12 - 0.16 = 2Probability of the concentration of Sulphur dioxide in the interval $0.12 - 0.16 = \frac{2}{30} = \frac{1}{15}$

Q13. In Q.1, Exercise 14.2, you were asked to prepare a frequency distribution table regarding the blood groups of 30 students of a class. Use this table to determine the probability that a student of this class, selected at random, has blood group AB.

Q1, Exercise 14.2: The blood groups of 30 students of Class VIII are recorded as follows:

A, B, O, O, AB, O, A, O, B, A, O, B, A, O, O, A, AB, O, A, A, O, O, AB, B, A, O, B, A, B, O.

Difficulty Level:

Easy

Known/given:

Number of students and their blood group.

Unknown:

Probability of students having blood group AB.

Reasoning:

The probability of certain event is given by the ratio of occurrence of a particular event by the total number of events.

Probability of an event, $P(E) = \frac{\text{Number of instances that event takes place}}{\text{Total number of instances}}$

Solution:

Total number of students = 30 Number of students having blood group AB = 3 Probability of students having blood group AB = $\frac{3}{30} = \frac{1}{10}$

When you learn math in an interesting way, you never forget.

25 Million

Math classes & counting

100K+

Students learning Math the right way

20+ Countries

Present across USA, UK, Singapore, India, UAE & more.

Why choose Cuemath?

"Cuemath is a valuable addition to our family. We love solving puzzle cards. My daughter is now visualizing maths and solving problems effectively!" "Cuemath is great because my son has a one-on-one interaction with the teacher. The instructor has developed his confidence and I can see progress in his work. One-on-one interaction is perfect and a great bonus." "I appreciate the effort that miss Nitya puts in to help my daughter understand the best methods and to explain why she got a problem incorrect. She is extremely patient and generous with Miranda."

- Gary Schwartz

- Kirk Riley

- Barbara Cabrera

Get the Cuemath advantage

Book a FREE trial class