

Get better at Math.
Get better at
everything.

Come experience the Cuemath methodology and ensure your child stays ahead at math this summer.

Adaptive Platform

Interactive Visual Simulations

Personalized Attention

For Grades 1 - 10

LIVE online classes by trained and certified experts.

Get the Cuemath advantage

Book a FREE trial class

Chapter 2: Polynimials

Exercise 2.1 (Page 32 of Grade 9 NCERT Textbook)

Q1. Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer.

(i)
$$4x^2 - 3x + 7$$

(ii)
$$y^2 + \sqrt{2}$$

(ii)
$$y^2 + \sqrt{2}$$
 (iii) $3\sqrt{t} + t\sqrt{2}$

(iv)
$$y + \frac{2}{y}$$

(v)
$$x^{10} + y^3 + t^{50}$$

Difficulty level: Easy

Solution:

(i) $4x^2 - 3x + 7 \rightarrow \text{Polynomial in one variable } x$.

(ii) $y^2 + \sqrt{2} \rightarrow$ Polynomial in one variable y.

(iii) $3\sqrt{t} + t\sqrt{2} \rightarrow \text{Not a polynomial, since the power of the variable in the first$ term is $\frac{1}{2}$ which is not a whole number.

(iv) $y + \frac{2}{y} \rightarrow \text{Not a polynomial since the power of the variable in the second}$ term is -1 which is not a whole number.

(v) $x^{10} + y^3 + t^{50} \rightarrow$ Not a polynomial in one variable since there are 3 variables *x*, *y*, *t*.

Q2. Write the coefficients of x^2 in each of the following:

(i)
$$2 + x^2 + x$$

(ii)
$$2 - x^2 + x^3$$

(i)
$$2+x^2+x$$
 (ii) $2-x^2+x^3$ (iii) $\frac{\pi}{2}x^2+x$ (iv) $\sqrt{2}x-1$

(iv)
$$\sqrt{2}x - 1$$

Difficulty level: Easy

(i)
$$2 + x^2 + x$$

Coefficient of $x^2 = 1$

(ii)
$$2 - x^2 + x^3$$

Coefficient of $x^2 = -1$

(iii)
$$\frac{\pi}{2}x^2 + x$$

Coefficient of $x^2 = \frac{\pi}{2}$

(iv)
$$\sqrt{2}x - 1$$

Coefficient of $x^2 = 0$, since there is no term of x^2 .

Q3. Give one example each of a binomial of degree 35, and of a monomial of degree 100.

Difficulty level: Easy

Solution:

(i) A binomial of degree 35

Binomial means polynomial having only 2 terms. Here the highest degree should be 35. So, the binomial will look like $ax^{35} - bx^c$ where $a \ne 0$, $b \ne 0$ and $0 \le c < 35$.

Example: $3x^{35} - 5$

(ii) A monomial of degree 100

Monomial means polynomial having only 1 term. Here the highest degree should be 100. So, the monomial will look like ax^{100} where $a \neq 0$.

Example: $5x^{100}$

Q4. Write the degree of each of the following polynomials:

(i)
$$5x^3 + 4x^2 + 7x$$

(ii)
$$4 - y^2$$

(i)
$$5x^3 + 4x^2 + 7x$$
 (ii) $4 - y^2$ (iii) $5t - \sqrt{7}$ (iv) 3

Difficulty level: Easy

Reasoning:

The highest power of the variable in a polynomial is called as the degree of the polynomial.

Solution:

(i) Degree of $5x^3 + 4x^2 + 7x$ is 3(the highest power of the variable x)

(ii) Degree of $4 - y^2$ is 2 (the highest power of the variable y)

(iii) Degree of $5t - \sqrt{7}$ is 1(the highest power of the variable *t*)

(iv) Degree of 3 is 0 (degree of a constant polynomial is 0. Here $3 = 3x^0$)

Q5. Classify the following as linear, quadratic and cubic polynomials:

- (i) $x^2 + x$
- (ii) $x x^3$
- (iii) $y + y^2 + 4$
- (iv) 1 + x

- (v) 3t
- (vi) r^2
- (vii) $7x^3$

Difficulty level: Easy

Reasoning:

A polynomial of degree one is called a linear polynomial.

A polynomial of degree two is called a quadratic polynomial.

A polynomial of degree three is called a cubic polynomial.

Solution:

(i) $x^2 + x \rightarrow$ Quadratic polynomial since the degree is 2.

(ii) $x - x^3 \rightarrow$ Cubic polynomial since the degree is 3.

(iii) $y + y^2 + 4 \rightarrow$ Quadratic polynomial since the degree is 2.

(iv)1+x \rightarrow Linear polynomial since the degree is 1.

(v) $3t \rightarrow$ Liner polynomial since the degree is 1.

(vi) $r^2 \rightarrow$ Quadratic polynomial since the degree is 2.

(vii) $7x^3 \rightarrow$ Cubic polynomial since the degree is 3.

Chapter 2: Polynimials

Exercise 2.2(Page 34 of Grade 9 NCERT Textbook)

Q1. Find the value of the polynomial $5x-4x^2+3$ at

(i)
$$x = 0$$

(ii)
$$x = -1$$

(iii)
$$x = 2$$

Difficulty level: Easy

Solution:

Let $p(x) = 5x - 4x^2 + 3$

(i) $p(0) = 5(0) - 4(0)^2 + 3$ =3

(ii) $p(-1) = 5(-1) - 4(-1)^2 + 3$ =-5-4+3= -6

(iii) $p(2) = 5(2) - 4(2)^2 + 3$ =10-16+3= -3

Q2. Find p(0), p(1) and p(2) for each of the following polynomials:

(i)
$$p(y) = y^2 - y + 1$$

(i)
$$p(y) = \frac{y^2 - y + 1}{y^2 - y + 1}$$
 (ii) $p(t) = 2 + t + 2t^2 - t^3$

(iii)
$$p(x) = x^3$$

(iv)
$$p(x) = (x-1)(x+1)$$

Difficulty level: Easy

Solution:

(i)

$$p(y) = y^{2} - y + 1$$

$$p(0) = (0)^{2} - (0) + 1 = 1$$

$$p(1) = (1)^{2} - (1) + 1 = 1$$

 $p(2) = (2)^2 - 2 + 1 = 3$

(ii)

$$p(t) = 2 + t + 2(t^{2}) - t^{3}$$

$$p(0) = 2 + 0 + 2(0)^{2} - (0)^{3}$$

$$= 2 + 0 + 0 - 0 = 2$$

$$p(1) = 2 + 1 + 2(1)^{2} - (1)^{3}$$

$$= 2 + 1 + 2 - 1 = 4$$

$$p(2) = 2 + 2 + 2(2)^{2} - (2)^{3}$$

$$= 2 + 2 + 8 - 8 = 4$$

(iii)

$$p(x) = x^{3}$$

$$p(0) = (0)^{3} = 0$$

$$p(1) = (1)^{3} = 1$$

$$p(2) = (2)^{3} = 8$$

(iv)

$$p(x) = (x-1)(x+1)$$

$$p(x) = x^{2} - 1$$

$$p(0) = (0)^{2} - 1 = -1$$

$$p(1) = (1)^{2} - 1 = 0$$

$$p(2) = (2)^{2} - 1 = 3$$

Q3. Verify whether the following are zeroes of the polynomial, indicated against them.

(i)
$$p(x) = 3x + 1, x = -\frac{1}{3}$$

(ii)
$$p(x) = 5x - \pi$$
, $x = \frac{4}{5}$

(iii)
$$p(x) = x^2 - 1, x = 1, -1$$

(iv)
$$p(x) = (x+1)(x-2), x = -1,2$$

(v)
$$p(x) = x^2, x = 0$$

(vi)
$$p(x) = lx + m, \ x = \frac{-m}{l}$$

(vii)
$$p(x) = 3x^2 - 1$$
, $x = -\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}$

(viii)
$$p(x) = 2x + 1$$
, $x = \frac{1}{2}$

Difficulty level: Easy

Reasoning:

In general, we say that a zero of a polynomial p(x) is a number c such that p(c) = 0.

Solution:

(i)

$$p(x) = 3x + 1, x = \frac{-1}{3}$$

$$p\left(\frac{-1}{3}\right) = 3 \times \left(\frac{-1}{3}\right) + 1 = -1 + 1 = 0$$

$$\therefore \frac{-1}{3} \text{ is a zero of } p(x).$$

(ii)
$$p(x) = 5x - \pi, x = \frac{4}{5}$$

$$p\left(\frac{4}{5}\right) = 5 \times \frac{4}{5} - \pi = 4 - \pi \neq 0$$

$$\therefore \frac{4}{5} \text{ is not a zero of } p(x).$$

(iii)

$$p(x) = x^{2} - 1, x = 1, -1$$

$$p(1) = 1^{2} - 1 = 0$$

$$p(-1) = (-1)^{2} - 1 = 1 - 1 = 0$$

$$\therefore 1 \text{ and } -1 \text{ are zeroes of } p(x).$$

(iv)

$$p(x) = (x+1)(x-2), x = -1, 2$$

$$p(-1) = (-1+1)(-1-2) = 0 \times (-3) = 0$$

$$p(2) = (2-1)(2-2) = 1 \times 0 = 0$$

$$\therefore -1 \text{ and } 2 \text{ are zeroes of } p(x).$$

(v)

$$p(x) = x^{2}, x = 0$$

$$p(0) = 0^{2} = 0$$

$$\therefore 0 \text{ is a zero of } p(x).$$

(vi)

$$p(x) = lx + m, x = \frac{-m}{l}$$

$$p\left(\frac{-m}{l}\right) = l \times \left(\frac{-m}{l}\right) + m$$

$$= -m + m = 0$$

$$\therefore \frac{-m}{l} \text{ is a zero of } p(x)$$

(vii)

$$p(x) = 3x^{2} - 1, x = -\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}$$
$$p\left(\frac{-1}{\sqrt{3}}\right) = 3 \times \left(\frac{-1}{\sqrt{3}}\right)^{2} - 1$$

$$p\left(\frac{-1}{\sqrt{3}}\right) = 3 \times \left(\frac{-1}{\sqrt{3}}\right) - 1$$
$$= 3 \times \frac{1}{3} - 1 = 1 - 1 = 0$$

$$\therefore \frac{-1}{\sqrt{3}} \text{ is a zero of } p(x)$$

$$p\left(\frac{2}{\sqrt{3}}\right) = 3 \times \left(\frac{2}{\sqrt{3}}\right)^2 - 1$$
$$= 3 \times \frac{4}{3} - 1$$
$$= 4 - 1$$
$$= 3 \neq 0$$

$$\therefore \frac{2}{\sqrt{3}} \text{ is not a zero of } p(x)$$

(viii)

$$p(x) = 2x + 1, x = \frac{1}{2}$$

$$p\left(\frac{1}{2}\right) = 2 \times \frac{1}{2} + 1$$

$$= 1 + 1$$

$$= 2 \neq 0$$

$$\therefore \frac{1}{2} \text{ is not a zero of } p(x).$$

Q4. Find the zero of the polynomials in each of the following cases:

(i)
$$p(x) = x + 5$$

(ii)
$$p(x) = x - 5$$

(iii)
$$p(x) = 2x + 5$$

(iv)
$$p(x) = 3x - 2$$

$$(v) p(x) = 3x$$

(vi)
$$p(x) = ax$$
, $a \neq 0$

(vii)
$$p(x) = c x + d$$
, $c \neq 0$, c , d are real numbers.

Difficulty level: Easy

Reasoning:

In general, we say that a zero of a polynomial p(x) is a number c such that p(c) = 0.

Solution:

(i)

$$p(x) = x + 5$$

$$p(x) = 0 \rightarrow x + 5 = 0$$

$$\Rightarrow x = -5$$

 \therefore -5 is the zero of p(x)

(ii) p(x) = x - 5 $p(x) = 0 \rightarrow x - 5 = 0$ $\Rightarrow x = 5$ $\therefore 5 \text{ is the zero of } p(x)$

(iii) p(x) = 2x + 5 $p(x) = 0 \rightarrow 2x + 5 = 0$ $\Rightarrow 2x = -5$ $\Rightarrow x = \frac{-5}{2}$ $\therefore \frac{-5}{2} \text{ is the zero of } p(x)$

(iv) p(x) = 3x - 2 $p(x) = 0 \rightarrow 3x - 2 = 0$ $\Rightarrow 3x = 2$ $\Rightarrow x = \frac{2}{3}$ $\therefore \frac{2}{3} \text{ is the zero of } p(x)$

(v) p(x) = 3x $p(x) = 0 \rightarrow 3x = 0$ x = 0 $\therefore 0 \text{ is the zero of } p(x)$

(vi)

$$p(x) = ax, a \neq 0$$

$$p(x) = 0 \rightarrow ax = 0$$

$$x = 0$$

$$\therefore 0 \text{ is the zero of } p(x)$$

(vii)
$$p(x) = cx + d, c \neq 0, c, d \text{ are real numbers.}$$

$$p(x) = 0 \rightarrow cx + d = 0$$

$$\Rightarrow cx = -d$$

$$\Rightarrow x = \frac{-d}{c}$$

$$\therefore \frac{-d}{c} \text{ is the zero of } p(x).$$

Chapter 2: Polynimials

Exercise 2.3 (Page 40 of Grade 9 NCERT Textbook)

Q1. Find the remainder when $x^3 + 3x^2 + 3x + 1$ is divided by

(i)
$$x + 1$$

(ii)
$$x - \frac{1}{2}$$
 (iii) x (iv) $x + \pi$ (v) $5 + 2x$

(iv)
$$x + \pi$$

$$(v) 5 + 2x$$

Difficulty Level: Medium

Reasoning:

Let p(x) be any polynomial of degree greater than or equal to one and let a be any real number. If a polynomial p(x) is divided by x-a then the remainder is p(a).

Solution:

Let
$$p(x) = x^3 + 3x^2 + 3x + 1$$

(i) The root of
$$x+1=0$$
 is -1

$$p(-1) = (-1)^3 + 3(-1)^2 + 3(-1) + 1$$

$$= -1 + 3 - 3 + 1$$

Hence by the remainder theorem, 0 is the remainder when $x^3 + 3x^2 + 3x + 1$ is divided by x+1. We can also say that x+1. is a factor of x^3+3x^2+3x+1 .

(ii) The root of
$$x - \frac{1}{2} = 0$$
 is $\frac{1}{2}$

$$p\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^3 + 3\left(\frac{1}{2}\right)^2 + 3\left(\frac{1}{2}\right) + 1$$

$$= \frac{1}{8} + \frac{3}{4} + \frac{3}{2} + 1$$

$$= \frac{1 + 6 + 12 + 8}{8}$$

$$= \frac{27}{8}$$

Hence by the remainder theorem, $\frac{27}{8}$ is the remainder when $x^3 + 3x^2 + 3x + 1$ is divided by $x - \frac{1}{2}$.

(iii) The root of x = 0 is 0 $p(0) = (0)^3 + 3(0)^2 + 3(0) + 1$ =0+0-0+1

Hence by the remainder theorem, 1 is the remainder when $x^3 + 3x^2 + 3x + 1$ is divided by χ .

(iv) The root of $x + \pi = 0$ is $-\pi$ $p(-\pi) = (-\pi)^3 + 3(-\pi)^2 + 3(-\pi) + 1$ $=-\pi^3+3\pi^2-3\pi+1$

Hence by the remainder theorem, $-\pi^3 + 3\pi^2 - 3\pi + 1$ is the remainder when $x^3 + 3x^2 + 3x + 1$ is divided by $x + \pi$.

(v) The root of
$$5 + 2x = 0 \text{ is } \frac{-5}{2}$$

$$p\left(\frac{-5}{2}\right) = \left(\frac{-5}{2}\right)^3 + 3\left(\frac{-5}{2}\right)^2 + 3\left(\frac{-5}{2}\right) + 1$$

$$= \frac{-125}{8} + \frac{75}{4} + \frac{-15}{2} + 1$$

$$= \frac{-125 + 150 - 60 + 8}{8}$$

$$= \frac{-185 + 158}{8}$$

$$= \frac{-27}{8}$$

Hence by remainder theorem, $\frac{-27}{8}$ is the remainder when $x^3 + 3x^2 + 3x + 1$ is divided by 5 + 2x.

Q2. Find the remainder when $x^3 - ax^2 + 6x - a$ is divided by x - a.

Difficulty Level: Medium

Reasoning:

Let p(x) be any polynomial of degree greater than or equal to one and let a be any real number. If a polynomial p(x) is divided by x-a then the remainder is p(a).

Solution:

Let
$$p(x) = x^3 - ax^2 + 6x - a$$

The root of x-a=0 is a.

$$p(a) = (a)^{3} - a(a)^{2} + 6(a) - a$$
$$= a^{3} - a^{3} + 5a$$
$$= 5a$$

Hence by remainder theorem, 5a is the remainder when $x^3 - ax^2 + 6x - a$ is divided by x - a.

Q3. Check whether 7 + 3x is a factor of $p(x) = 3x^3 + 7x$.

Difficulty Level: Medium

Reasoning:

When a polynomial p(x) is divided by x-a and by the remainder theorem if p(a) = 0 then x - a is a factor of p(x).

Solution:

$$Let p(x) = 3x^3 + 7x$$

The root of
$$7 + 3x = 0$$
 is $\frac{-7}{3}$

$$p\left(\frac{-7}{3}\right) = 3\left(\frac{-7}{3}\right)^3 + 7\left(\frac{-7}{3}\right)$$

$$= \frac{3 \times (-343)}{27} + \frac{-49}{3}$$

$$= \frac{-343 - 147}{9}$$

$$= \frac{-490}{9} \neq 0$$

Since the remainder of $p\left(\frac{-7}{3}\right) \neq 0, 7+3x$ is not a factor of $3x^3+7x$.

Chapter 2: Polynimials

Exercise 2.4 (Page 43 of Grade 9 NCERT Textbook)

Q1. Determine which of the following polynomials has (x + 1) a factor:

(i)
$$x^3 + x^2 + x + 1$$

(ii)
$$x^4 + x^3 + x^2 + x + 1$$

(iii)
$$x^4 + 3x^3 + 3x^2 + x + 1$$

(iii)
$$x^4 + 3x^3 + 3x^2 + x + 1$$
 (iv) $x^3 - x^2 - (2 + \sqrt{2})x + \sqrt{2}$

Difficulty Level: Medium

Reasoning:

When a polynomial p(x) is divided by x - a and if p(a) = 0 then (x - a) is a factor of p(x). The root of x+1=0 is -1.

Solution:

(i) Let
$$p(x) = x^3 + x^2 + x + 1$$

$$\therefore p(-1) = (-1)^3 + (-1)^2 + (-1) + 1$$

$$= -1 + 1 - 1 + 1 = 0$$

Since the remainder of p(-1) = 0, we conclude that x+1 is a factor of $x^3 + x^2 + x + 1$.

(ii) Let
$$p(x) = x^4 + x^3 + x^2 + x + 1$$

$$\therefore p(-1) = (-1)^4 + (-1)^3 + (-1)^2 + (-1) + 1$$

$$= 1 - 1 + 1 - 1 + 1$$

$$= 1 \neq 0$$

Since the remainder of $p(-1) \neq 0$, we conclude that x+1 in not a factor of

$$x^4 + x^3 + x^2 + x + 1$$
.

(iii) Let
$$p(x) = x^4 + 3x^3 + 3x^2 + x + 1$$

$$\therefore p(-1) = (-1)^4 + 3(-1)^3 + 3(-1)^2 + (-1) + 1$$

$$= 1 - 3 + 3 - 1 + 1$$

$$= 1 \neq 0$$

Since the remainder of $p(-1) \neq 0$, x+1 is not a factor of $x^4 + 3x^3 + 3x^2 + x + 1$.

(iv) Let
$$p(x) = x^3 - x^2 - (2 + \sqrt{2})x + \sqrt{2}$$

$$\therefore p(-1) = (-1)^3 - (-1)^2 - (2 + \sqrt{2})(-1) + \sqrt{2}$$

$$= -1 - 1 + 2 + \sqrt{2} + \sqrt{2}$$

$$= 2\sqrt{2}$$

Since the remainder of $p(-1) \neq 0$, (x+1) is not a factor of $x^3 - x^2 - (2 + \sqrt{2})x + \sqrt{2}$.

Q2. Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases:

(i)
$$p(x) = 2x^3 + x^2 - 2x - 1$$
, $g(x) = x + 1$

(ii)
$$p(x) = x^3 + 3x^2 + 3x + 1, g(x) = x + 2$$

(iii)
$$p(x) = x^3 - 4x^2 + x + 6, g(x) = x - 3$$

Difficulty Level: Medium

Reasoning:

By factor theorem, (x - a) is a factor of a polynomial p(x) if p(a) = 0.

To find if g(x) = x + a is a factor of p(x), we need to find the root of g(x). $x + a = 0 \rightarrow x = -a$

Solution:

(i) Let
$$p(x) = 2x^3 + x^2 - 2x - 1$$
, $g(x) = x + 1$
 $x + 1 = 0 \rightarrow x = -1$

Now,

$$p(-1) = 2(-1)^{3} + (-1)^{2} - 2(-1) - 1$$
$$= -2 + 1 + 2 - 1$$
$$= 0$$

Since the remainder of p(-1) = 0, by factor theorem we can say g(x) = x + 1 is a factor of $p(x) = 2x^3 + x^2 - 2x - 1$.

(ii) Let
$$p(x) = x^3 + 3x^2 + 3x + 1$$
, $g(x) = x + 2$
 $x + 2 = 0 \rightarrow x = -2$

Now.

$$p(-2) = (-2)^3 + 3(-2)^2 + 3(-2) + 1$$
$$= -8 + 12 - 6 + 1$$
$$= -1 \neq 0$$

Since the remainder of $p(-2) \neq 0$, by factor theorem we can say g(x) = x+2 is not a factor of $p(x) = x^3 + 3x^2 + 3x + 1$.

(iii) Let
$$p(x) = x^3 - 4x^2 + x + 6$$
, $g(x) = x - 3$
 $x - 3 = 0 \rightarrow x = 3$

Now,

$$p(3) = (3)^3 - 4(3)^2 + 3 + 6$$
$$= 27 - 36 + 3 + 6$$
$$= 0$$

Since the remainder of p(3) = 0, by factor theorem we can say g(x) = x-3 is a factor of $p(x) = x^3 - 4x^2 + x + 6$.

Q3. Find the value of k, if x - 1 is a factor of p(x) in each of the following cases:

Difficulty Level: Medium

(i)
$$p(x) = x^2 + x + k$$

(ii)
$$p(x) = 2x^2 + kx + \sqrt{2}$$

(iii)
$$p(x) = kx^2 - \sqrt{2x} + 1$$
 (iv) $p(x) = kx^2 - 3x + k$

(iv)
$$p(x) = kx^2 - 3x + k$$

Reasoning:

By factor theorem, if x-1 is a factor of p(x), then p(1) = 0.

Solution:

(i)

$$p(x) = x^{2} + x + k$$

$$p(1) = (1)^{2} + (1) + k$$

$$0 = 2 + k$$

$$\Rightarrow k = -2$$

(ii)

$$p(x) = 2x^{2} + kx + \sqrt{2}$$

$$p(1) = 2(1)^{2} + k(1) + \sqrt{2}$$

$$0 = 2 + k + \sqrt{2}$$

$$\Rightarrow k = -(2 + \sqrt{2})$$

(iii)

$$p(x) = kx^{2} - \sqrt{2x} + 1$$

$$p(1) = k(1)^{2} - \sqrt{2(1)} + 1$$

$$0 = k - \sqrt{2} + 1$$

$$\Rightarrow k = \sqrt{2} - 1$$

(iv)

$$p(x) = kx^{2} - 3x - k$$

$$p(1) = k(1^{2}) - 3(1) - k$$

$$0 = 2k - 3$$

$$\Rightarrow k = \frac{3}{2}$$

Q4. Factorise:

(i)
$$12x^2 - 7x + 1$$

(ii)
$$2x^2 + 7x + 3$$

(iii)
$$6x^2 + 5x - 6$$

(iv)
$$3x^2 - x - 4$$

Reasoning:

By splitting method, we can find factors using the following method. Find 2 numbers p, q such that:

i.
$$p + q = \text{co-efficient of } x$$

ii.
$$pq = \text{co-efficient of } x^2 \text{ and the constant term.}$$

Solution:

(i) $12x^2 - 7x + 1$

$$p+q=-7$$
 (co-efficient of x)
 $pq=12\times1=12$ (co-efficient of x^2 and the constant term.)

By trial and error method, we get p = -4, q = -3.

Now splitting the middle term of the given polynomial,

$$12x^{2} - 7x + 1 = 12x^{2} - 4x - 3x + 1$$

$$= 4x(3x - 1) - 1(3x - 1)$$

$$= (3x - 1)(4x - 1)$$
 (taking $(3x - 1)$ as common)

(ii) $2x^2 + 7x + 3$

$$p + q = 7$$
 (co-efficient of x)

$$pq = 2 \times 3 = 6$$
 (co-efficient of x^2 and the constant term.)

By trial and error method, we get p = 6, q = 1.

Now splitting the middle term of the given polynomial,

$$2x^{2} + 7x + 3 = 2x^{2} + 6x + x + 3$$
$$= 2x(x+3) + 1(x+3)$$
$$= (2x+1)(x+3)$$

(iii) $6x^2 + 5x - 6$

$$p + q = 5$$
 (co-efficient of x)

$$pq = 6 \times (-6) = -36$$
 (co-efficient of x^2 and the constant term.)

By trial and error method, we get p = 9, q = -4.

Now splitting the middle term of the given polynomial,

$$6x^{2} + 5x - 6 = 6x^{2} + 9x - 4x - 6$$
$$= 3x(2x+3) - 2(2x+3)$$
$$= (3x-2)(2x+3)$$

(iv)
$$3x^2 - x - 4$$

 $p + q = -1$ (co-efficient of x)
 $pq = 3 \times (-4) = -12$ (co-efficient of x^2 and the constant term.)

By trial and error method, we get p = -4, q = 3.

Now splitting the middle term of the given polynomial,

$$3x^{2} - x - 4 = 3x^{2} - 4x + 3x - 4$$

$$= 3x^{2} + 3x - 4x - 4$$

$$= 3x(x+1) - 4(x+1)$$

$$= (3x-4)(x+1)$$

Q5. Factorise:

(i)
$$x^3 - 2x^2 - x + 2$$

(ii)
$$x^3 - 3x^2 - 9x - 5$$

(iii)
$$x^3 + 13x^2 + 32x + 20$$
 (iv) $2y^3 + y^2 - 2y - 1$

(iv)
$$2y^3 + y^2 - 2y - 1$$

Solution:

(i) Let
$$p(x) = x^3 - 2x^2 - x + 2$$

By the factor theorem we know that x-a is a factor of p(x) if p(a) = 0.

We shall find a factor of p(x) by using some trial value of x, say x = 1.

$$p(1) = (1)^{3} - 2(1)^{2} - 1 + 2$$
$$= 1 - 2 - 1 + 2$$
$$= 0$$

Since the remainder of p(1) = 0, by factor theorem we can say x = 1 is a factor of

$$p(x) = x^3 - 2x^2 - x + 2.$$

Now divide p(x) by x-1 using long division,

$$\begin{array}{r}
 x^{2} - x - 2 \\
 x - 1 \overline{\smash)x^{3} - 2x^{2} - x + 2} \\
 \underline{x^{3} - x^{2}} \\
 -x^{2} - x \\
 \underline{-x^{2} - x} \\
 -x^{2} + x \\
 \underline{-2x + 2} \\
 \underline{-2x + 2} \\
 0
 \end{array}$$

Hence
$$x^3 - 2x^2 - x + 2 = (x - 1)(x^2 - x - 2)$$

Now taking $x^2 - x - 2$, find 2 numbers p, q such that:

i.
$$p + q = \text{co-efficient of } x$$

ii.
$$pq = \text{co-efficient of } x^2 \text{ and the constant term.}$$

 $p+q=-1 \text{ (co-efficient of } x)$

$$pq = 1 \times (-2) = -2$$
 (co-efficient of x^2 and the constant term.)

By trial and error method, we get p = -2, q = 1.

Now splitting the middle term of the given polynomial,

$$x^{2}-x-2 = x^{2}-2x+x-2$$

$$= x(x-2)+1(x-2)$$

$$= (x+1)(x-2)$$

$$\therefore x^{3}-2x^{2}-x+2 = (x-1)(x-2)(x+1)$$

Method 2:

$$x^{3} - 2x^{2} - x + 2 = (x^{3} - 2x^{2}) - (x - 2)$$

$$= x^{2}(x - 2) - 1(x - 2)$$

$$= (x - 2)(x^{2} - 1)$$

$$= (x - 2)(x + 1)(x - 1)$$
(By using $a^{2} - b^{2} = (a + b)(a - b)$)

(ii) Let
$$p(x) = x^3 - 3x^2 - 9x - 5$$

By the factor theorem we know that x-a is a factor of p(x) if p(a) = 0.

We shall find a factor of p(x) by using some trial value of x, say x = 1.

$$p(1) = (1)^{3} - 3(1)^{2} - 9(1) - 5$$
$$= 1 - 3 - 9 - 5$$
$$= -16 \neq 0$$

Since the remainder of $p(1) \neq 0$, by factor theorem we can say x=1 is not a factor of $p(x) = x^3 - 3x^2 - 9x - 5$.

Now say x = -1.

$$p(-1) = (-1)^3 - 3(-1)^2 - 9(-1) - 5$$

$$= -1 - 3 + 9 - 5$$

$$= -9 + 9 = 0$$

Since the remainder of p(-1) = 0, by factor theorem we can say x=-1 is a factor of $p(x) = x^3 - 3x^2 - 9x - 5$.

Now dividing p(x) by x+1 using long division.

$$\begin{array}{r}
x^{2} - 4x - 5 \\
x + 1 \overline{\smash)} x^{3} - 3x^{2} - 9x - 5 \\
\underline{x^{3} + x^{2}} \\
-4x^{2} - 9x \\
\underline{-4x^{2} - 9x} \\
-5x - 5 \\
\underline{-5x - 5} \\
0
\end{array}$$

Hence
$$x^3 - 3x^2 - 9x - 5 = (x+1)(x^2 - 4x - 5)$$

Now taking $x^2 - 4x - 5$, find 2 numbers p, q such that:

- i. p + q = co-efficient of x
- ii. $pq = \text{co-efficient of } x^2 \text{ and the constant term.}$

$$p+q=-4$$
 (co-efficient of x)
 $pq=1\times-5=-5$ (co-efficient of x^2 and the constant term.)

By trial and error method, we get p = -5, q = 1.

Now splitting the middle term of the given polynomial,

$$x^{2}-4x-5 = x^{2}-5x+x-5$$

$$= x(x-5)+1(x-5)$$

$$= (x+1)(x-5)$$

$$\therefore x^{3}-2x^{2}-x+2 = (x+1)(x-5)(x+1)$$

$$= (x+1)^{2}(x-5)$$

(iii) Let
$$p(x) = x^3 + 13x^2 + 32x + 20$$

By the factor theorem we know that *x-a* is a factor of p(x) if p(a) = 0.

We shall find a factor of p(x) by using some trial value of x, say x = -1. (Since all the terms are positive.)

$$p(-1) = (-1)^3 + 13(-1)^2 + 32(-1) + 20$$
$$= -1 + 13 - 32 + 20$$
$$= 0$$

Since the remainder of p(-1) = 0, by factor theorem we can say x=-1 is a factor of $p(x) = x^3 + 13x^2 + 32x + 20$.

Now dividing p(x) by x+1 using long division,

$$\begin{array}{r}
 x^2 + 12x + 20 \\
 x + 1 \overline{\smash)}x^3 + 13x^2 + 32x + 20 \\
 \underline{x^3 + x^2} \\
 \hline
 12x^2 + 32x \\
 \underline{12x^2 + 12x} \\
 \underline{20x + 20} \\
 \underline{20x + 20} \\
 0
 \end{array}$$

$$\therefore x^3 + 13x^2 + 32x + 20 = (x+1)(x^2 + 12x + 20)$$

Now taking $x^2 + 12x + 20$, find 2 numbers p, q such that:

- i. p + q = co-efficient of x
- ii. $pq = \text{co-efficient of } x^2 \text{ and the constant term.}$

$$p+q=12$$
 (co-efficient of x)
 $pq=1\times 20=20$ (co-efficient of x^2 and the constant term.)

By trial and error method, we get p = 10, q = 2.

Now splitting the middle term of the given polynomial,

$$x^{2} + 12x + 20 = x^{2} + 10x + 2x + 20$$

$$= x(x+10) + 2(x+10)$$

$$= (x+10)(x+2)$$

$$\therefore x^{3} + 13x^{2} + 32x + 20 = (x+1)(x+10)(x+2)$$

Method 2:

$$x^{3} + 13x^{2} + 32x + 20 = x^{3} + 10x^{2} + 3x^{2} + 30x + 2x + 20$$

$$= x^{2}(x+10) + 3x(x+10) + 2(x+10)$$

$$= (x+10)(x^{2} + 3x + 2)$$

$$= (x+10)(x^{2} + 2x + x + 2)$$

$$= (x+10)[x(x+2) + 1(x+2)]$$

$$= (x+10)(x+2)(x+1)$$

(iv) Let
$$p(y) = 2y^3 + y^2 - 2y - 1$$

By the factor theorem we know that (y-a) is a factor of p(y) if p(a) = 0. We shall find a factor of p(y) by using some trial value of y, say y = 1.

$$p(1) = 2(1)^{3} + (1)^{2} - 2(1) - 1$$

$$= 2 + 1 - 2 - 1$$

$$= 0$$

Since the remainder of p(1) = 0, by factor theorem we can say y-1 is a factor of $p(y) = 2y^3 + y^2 - 2y - 1$

Now dividing p(y) by y-1 using long division,

$$y-1)2y^{3} + y^{2} - 2y - 1$$

$$2y^{3} + y^{2} - 2y - 1$$

$$2y^{3} - 2y^{2}$$

$$3y^{2} - 2y$$

$$3y^{2} - 3y$$

$$y-1$$

$$\therefore 2y^3 + y^2 - 2y - 1 = (y - 1)(2y^2 + 3y + 1)$$

WWW.CUEMATH.COM

Now taking $2y^2 + 3y + 1$, find 2 numbers p, q such that:

- i. p + q = co-efficient of y
- ii. $pq = \text{co-efficient of } y^2 \text{ and the constant term.}$

$$p+q=3$$
 (co-efficient of y)
 $pq=2\times 1=2$ (co-efficient of y^2 and the constant term.)

By trial and error method, we get p = 2, q = 1.

Now splitting the middle term of the given polynomial,

$$2y^{2} + 3y + 1 = 2y^{2} + 2y + y + 1$$

$$= 2y(y+1) + 1(y+1)$$

$$= (2y+1)(y+1)$$

$$\therefore 2y^{3} + y^{2} - 2y - 1 = (y-1)(2y+1)(y+1)$$

Chapter 2: Polynimials

Exercise 2.5 (Page 40 of Grade 9 NCERT Textbook)

Q1. Use suitable identities to find the following products:

(i)
$$(x + 4) (x + 10)$$

(ii)
$$(x + 8) (x - 10)$$

(iii)
$$(3x + 4)(3x - 5)$$

(iv)
$$\left(y^2 + \frac{3}{2}\right)\left(y^2 - \frac{3}{2}\right)$$
 (v) (3-2x) (3+2x)

(v)
$$(3-2x)(3+2x)$$

Difficulty Level: Easy

Reasoning:

Identities:

$$(x+a)(x+b) = x^2 + (a+b)x + ab$$

 $(a+b)(a-b) = a^2 - b^2$

(i)
$$(x+4)(x+10)$$

Identity:
$$(x+a)(x+b) = x^2 + (a+b)x + ab$$

Here
$$a = 4$$
, $b = 10$

$$(x+4)(x+10) = x^2 + (4+10)x + 4 \times 10$$
$$= x^2 + 14x + 40$$

(ii)
$$(x+8)(x-10)$$

Identity:
$$(x+a)(x+b) = x^2 + (a+b)x + ab$$

Here
$$a = 8$$
, $b = -10$

$$(x+8)(x-10) = x^2 + (8-10)x + (8)(-10)$$
$$= x^2 - 2x - 80$$

(iii)
$$(3x+4)(3x-5)$$

Identity:
$$(x + a)(x + b) = x^2 + (a + b)x + ab$$

Here
$$x \to 3x, a = 4, b = -5$$

$$(3x+4)(3x-5) = (3x)^2 + (4-5)(3x) + (4)(-5)$$
$$= 9x^2 - 3x - 20$$

(iv)
$$(y^2 + \frac{3}{2})(y^2 - \frac{3}{2})$$

Identity:
$$(a+b)(a-b) = a^2 - b^2$$

Here
$$a = y^2$$
, $b = \frac{3}{2}$

$$\left(y^{2} + \frac{3}{2}\right)\left(y^{2} - \frac{3}{2}\right) = \left(y^{2}\right)^{2} - \left(\frac{3}{2}\right)^{2}$$
$$= y^{4} - \frac{9}{4}$$

(v)
$$(3-2x)(3+2x)$$

Identity:
$$(a+b)(a-b) = a^2 - b^2$$

Here
$$a = 3$$
, $b = 2x$

$$(3-2x)(3+2x) = (3)^2 - (2x)^2$$
$$= 9-4x^2$$

Q2. Evaluate the following products without multiplying directly:

(i)
$$103 \times 107$$

(ii)
$$95 \times 96$$

(iii)
$$104 \times 96$$

Difficulty Level: Easy

Reasoning:

Identities:

$$(x+a)(x+b) = x^2 + (a+b)x + ab$$

 $(a+b)(a-b) = a^2 - b^2$

(i)
$$103 \times 107$$

Identity:
$$(x+a)(x+b) = x^2 + (a+b)x + ab$$

 $103 \times 107 = (100+3)(100+7)$
 $= (100)^2 + (3+7)(100) + (3)(7)$
(taking $x=100$, $a=3$, $b=7$)
 $= 10000 + 1000 + 21$
 $= 11021$

Identity:
$$(x+a)(x+b) = x^2 + (a+b)x + ab$$

 $95 \times 96 = (100-5)(100-4)$
 $= (100)^2 + (-5-4)(100) + (-5)(-4)$
(Taking $x = 100$, $a = -5$, $b = -4$)
 $= 10000 - 900 + 20$
 $= 9120$

(iii) 104×96

Identity:
$$(a+b)(a-b) = a^2 - b^2$$

 $104 \times 96 = (100+4)(100-4)$
 $= (100)^2 - (4)^2$
(Taking a = 100, b = 4)
 $= 10000-16$
 $= 9984$

Q3. Factorise the following using appropriate identities:

(i)
$$9x^2 + 6xy + y^2$$

(ii)
$$4y^2 - 4y + 1$$

(iii)
$$x^2 - \frac{y^2}{100}$$

Difficulty Level: Easy

Reasoning:

Identities:
$$(a+b)^2 = a^2 + 2ab + b^2$$

 $(a-b)^2 = a^2 - 2ab + b^2$

$$(a+b)(a-b) = a^2 - b^2$$

(i)
$$9x^2 + 6xy + y^2 = (3x)^2 + 2(3x)(y) + (y)^2$$

Identity:
$$(a+b)^2 = a^2 + 2ab + b^2$$

Here
$$a = 3x$$
, $b = y$

Hence
$$9x^2 + 6xy + y^2 = (3x + y)^2$$

(ii)
$$4y^2 - 4y + 1 = (2y)^2 - 2(2y)(1) + (1)^2$$

Identity:
$$(a-b)^2 = a^2 - 2ab + b^2$$

Here
$$a = 2y$$
, $b = 1$

Hence
$$4y^2 - 4y + 1 = (2y - 1)^2$$

(iii)
$$x^2 - \frac{y^2}{100} = x^2 - \left(\frac{y}{10}\right)^2$$

Identity:
$$(a+b)(a-b) = a^2 - b^2$$

Here
$$a = x$$
, $b = \frac{y}{10}$

Hence
$$x^2 - \frac{y^2}{100} = \left(x + \frac{y}{10}\right) \left(x - \frac{y}{10}\right)$$

Q4. Expand each of the following, using suitable identities:

(i)
$$(x+2y+4z)^2$$

(ii)
$$(2x - y + z)^2$$

(iii)
$$(-2x+3y+2z)^2$$

(iv)
$$(3a-7b-c)^2$$

(v)
$$(-2x + 5y - 3z)^2$$

(iv)
$$(3a-7b-c)^2$$
 (v) $(-2x+5y-3z)^2$ (vi) $\left[\frac{1}{4}a-\frac{1}{2}b+1\right]^2$

Difficulty Level: Easy

Reasoning:

Identity:
$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$

(i)
$$(x+2y+4z)^2$$

Identity:
$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$

Taking
$$a = x$$
, $b = 2y$, $c = 4z$

$$(x+2y+4z)^2 = x^2 + (2y)^2 + (4z)^2 + 2(x)(2y) + 2(2y)(4z) + 2(4z)(x)$$
$$= x^2 + 4y^2 + 16z^2 + 4xy + 16yz + 8zx$$

(ii)
$$(2x - y + z)^2$$

Identity:
$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$

Taking
$$a = 2x$$
, $b = -y$, $c = z$

$$(2x - y + z)^{2} = (2x)^{2} + (-y)^{2} + (z)^{2} + 2(2x)(-y) + 2(-y)(z) + 2(z)(2x)$$
$$= 4x^{2} + y^{2} + z^{2} - 4xy - 2yz + 4zx$$

(iii)
$$(-2x + 3y + 2z)^2$$

Identity:
$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$

Taking
$$a = -2x$$
, $b = 3y$, $c = 2z$

$$(-2x+3y+2z)^{2} = (-2x)^{2} + (3y)^{2} + (2z)^{2} + 2(-2x)(3y) + 2(3y)(2z) + 2(2z)(-2x)$$
$$= 4x^{2} + 9y^{2} + 4z^{2} - 12xy + 12yz - 8zx$$

(iv)
$$(3a-7b-c)^2$$

Identity:
$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$

Taking
$$a = 3a, b = -7b, c = -c$$

$$(3a-7b-c)^2 = (3a)^2 + (-7b)^2 + (-c)^2 + 2(3a)(-7b) + 2(-7b)(-c) + 2(-c)(3a)$$
$$= 9a^2 + 49b^2 + c^2 - 42ab + 14bc - 6ca$$

(v)
$$(-2x+5y-3z)^2$$

Identity:
$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$

Taking
$$a = -2x$$
, $b = 5y$, $c = -3z$

$$(-2x+5y-3z)^2 = (-2x)^2 + (5y)^2 + (-3z)^2 + 2(-2x)(5y) + 2(5y)(-3z) + 2(-3z)(-2x)$$

$$=4x^{2}+25y^{2}+9z^{2}-20xy-30yz+12zx$$

WWW.CUEMATH.COM

(vi)
$$\left[\frac{1}{4}a - \frac{1}{2}b + 1\right]^2$$

Identity: $(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$

Taking $a = \frac{1}{4}a$, $b = \frac{-1}{2}b$, c = 1

$$\left[\frac{1}{4}a - \frac{1}{2}b + 1\right]^2 = \left(\frac{1}{4}a\right)^2 + \left(\frac{-1}{2}b\right)^2 + \left(1\right)^2 + 2\left(\frac{1}{4}a\right)\left(\frac{-1}{2}b\right) + 2\left(\frac{-1}{2}b\right)(1) + 2(1)\left(\frac{1}{4}a\right)$$
$$= \frac{1}{16}a^2 + \frac{1}{4}b^2 + 1 - \frac{1}{4}ab - b + \frac{1}{2}a$$

Q5. Factorise:

(i)
$$4x^2 + 9y^2 + 16z^2 + 12xy - 24yz - 16xz$$

(ii)
$$2x^2 + y^2 + 8z^2 - 2\sqrt{2}xy + 4\sqrt{2}yz - 8xz$$

Difficulty Level: Easy

Reasoning:

Identity: $(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$

Solution:

(i)
$$4x^2 + 9y^2 + 16z^2 + 12xy - 24yz - 16xz$$

This can be re-written as:

$$(2x)^{2} + (3y)^{2} + (-4z)^{2} + 2(2x)(3y) + 2(3y)(-4z) + 2(-4z)(2x) + 2(2x)(-4z)$$

Which is of the form: $a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = (a+b+c)^2$

Here
$$a = 2x$$
, $b = 3y$, $c = -4z$

Hence
$$4x^2 + 9y^2 + 16z^2 + 12xy - 24yz - 16xz = (2x + 3y - 4z)^2$$

(ii)
$$2x^2 + y^2 + 8z^2 - 2\sqrt{2}xy + 4\sqrt{2}yz - 8xz$$

This can be re-written as:

$$(-\sqrt{2}x)^2 + (y)^2 + (2\sqrt{2}z)^2 + 2(-\sqrt{2}x)(y) + 2(y)(2\sqrt{2}z) + 2(2\sqrt{2}z)(-\sqrt{2}x)$$

Which is of the form: $a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = (a + b + c)^2$

Here
$$a = -2\sqrt{2}x$$
, $b = y$, $c = 2\sqrt{2}z$

Hence
$$2x^2 + y^2 + 8z^2 - 2\sqrt{2}xy + 4\sqrt{2}yz - 8xz = (-\sqrt{2}x + y + 2\sqrt{2}z)^2$$

Q6. Write the following cubes in expanded form:

(i)
$$(2x+1)^3$$

(ii)
$$(2a-3b)$$

(iii)
$$\left(\frac{3}{2}x+1\right)^3$$

(i)
$$(2x+1)^3$$
 (ii) $(2a-3b)^3$ (iii) $\left(\frac{3}{2}x+1\right)^3$ (iv) $\left(x-\frac{2}{3}y\right)^3$

Difficulty Level: Easy

Reasoning:

Identities:
$$(x+y)^3 = x^3 + y^3 + 3xy(x+y)$$

$$(x-y)^3 = x^3 - y^3 - 3xy(x-y)$$

(i)
$$(2x+1)^3$$

Identity:
$$(x+y)^3 = x^3 + y^3 + 3xy(x+y)$$

Here
$$x = 2x$$
, $y = 1$

$$(2x+1)^3 = (2x)^3 + (1)^3 + 3(2x)(1)(2x+1)$$

$$= 8x^3 + 1 + 6x(2x+1)$$

$$= 8x^3 + 1 + 12x^2 + 6x$$

$$= 8x^3 + 12x^2 + 6x + 1$$

(ii)
$$(2a-3b)^3$$

Identity:
$$(x-y)^3 = x^3 - y^3 - 3xy(x-y)$$

Here
$$x = 2a$$
, $y = 3b$

$$(2a-3b)^{3} = (2a)^{3} - (3b)^{3} - 3(2a)(3b)(2a-3b)$$

$$= 8a^{3} - 27b^{3} - 18ab(2a-3b)$$

$$= 8a^{3} - 27b^{3} - 36a^{2}b + 54ab^{2}$$

$$= 8a^{3} - 36a^{2}b + 54ab^{2} - 27b^{3}$$

(iii)
$$\left[\frac{3}{2}x+1\right]^3$$

Identity:
$$(x+y)^3 = x^3 + y^3 + 3xy(x+y)$$

Here
$$x = \frac{3}{2}x$$
, $y = 1$

$$\left(\frac{3}{2}x+1\right)^{3} = \left(\frac{3}{2}x\right)^{3} + (1)^{3} + 3\left(\frac{3}{2}x\right)(1)\left(\frac{3}{2}x+1\right)$$

$$= \frac{27}{8}x^{3} + 1 + \frac{9}{2}x\left(\frac{3}{2}x+1\right)$$

$$= \frac{27}{8}x^{3} + 1 + \frac{27}{4}x^{2} + \frac{9}{2}x$$

$$= \frac{27}{8}x^{3} + \frac{27}{4}x^{2} + \frac{9}{2}x + 1$$

(iv)
$$(x-\frac{2}{3}y)^3$$

Identity:
$$(x-y)^3 = x^3 - y^3 - 3xy(x-y)$$

Here
$$x = x$$
, $y = \frac{2}{3}y$

$$\left(x - \frac{2}{3}y\right)^3 = x^3 - \left(\frac{2}{3}y\right)^3 - 3(x)\left(\frac{2}{3}y\right)\left(x - \frac{2}{3}y\right)$$

$$= x^3 - \frac{8}{27}y^3 - 2xy\left(x - \frac{2}{3}y\right)$$

$$= x^3 - \frac{8}{27}y^3 - 2x^2y + \frac{4}{3}xy^2$$

$$= x^3 - 2x^2y + \frac{4}{3}xy^2 - \frac{8}{27}y^3$$

Q7. Evaluate the following using suitable identities:

(i)
$$(99)^3$$

(ii)
$$(102)^3$$

$$(iii) (998)^3$$

Difficulty Level: Easy

Reasoning:

Identities:
$$(x+y)^3 = x^3 + y^3 + 3xy(x+y)$$

$$(x-y)^3 = x^3 - y^3 - 3xy(x-y)$$

(i)
$$(99)^3 = (100-1)^3$$

Identity:
$$(x-y)^3 = x^3 - y^3 - 3xy(x-y)$$

Take
$$x = 100$$
, $y = 1$

$$(99)^{3} = (100)^{3} - (1)^{3} - 3(100)(1)(100 - 1)$$
$$= 1000000 - 1 - 300 \times 99$$

$$=9,70,299$$

(ii)
$$(102)^3 = (100+2)^3$$

Identity:
$$(x+y)^3 = x^3 + y^3 + 3xy(x+y)$$

Take
$$x = 100$$
, $y = 2$

$$(102)^3 = (100)^3 + (2)^3 + 3(100)(2)(100 + 2)$$

$$=10000000+8+600\times102$$

$$=1000008+61200$$

(iii)
$$(998)^3 = (1000 - 2)^3$$

Identity:
$$(x-y)^3 = x^3 - y^3 - 3xy(x-y)$$

Take
$$x = 1000$$
, $y = 2$

$$(998)^{3} = (1000)^{3} - (2)^{3} - 3(1000)(2)(1000 - 2)$$
$$= 1000000000 - 8 - 6000 \times 998$$
$$= 999999992 + 5988000$$

Q8. Factorise each of the following:

(i)
$$8a^3 + b^3 + 12a^2b + 6ab^2$$

(ii)
$$8a^3 - b^3 - 12a^2b + 6ab^2$$

(iii)
$$27-125a^3-135a+225a^2$$

= 99, 40, 11, 992

(iv)
$$64a^3 - 27b^3 - 144a^2b + 108ab^2$$

(v)
$$27p^3 - \frac{1}{216} - \frac{9}{2}p^2 + \frac{1}{4}p$$

Difficulty Level: Medium

Reasoning:

Identities:
$$(x+y)^3 = x^3 + y^3 + 3xy(x+y)$$

$$(x-y)^3 = x^3 - y^3 - 3xy(x-y)$$

(i)
$$8a^3 + b^3 + 12a^2b + 6ab^2$$

This can be re-written as:
$$(2a)^3 + (b)^3 + 3(2a)^2(b) + 3(2a)(b)^2$$

Which is of the form:
$$x^3 + y^3 + 3xy(x+y) = (x+y)^3$$

Hence
$$8a^3 + b^3 + 12a^2b + 6ab^2 = (2a+b)^3$$

(ii)
$$8a^3 - b^3 - 12a^2b + 6ab^2$$

This can be re-written as:
$$(2a)^3 - (b)^3 - 3(2a)^2(b) + 3(2a)(b)^2$$

Which is of the form:
$$x^3 - y^3 - 3x^2y + 3xy^2 = (x - y)^3$$

Hence
$$8a^3 - b^3 - 12a^2b + 6ab^2 = (2a - b)^3$$

(iii)
$$27 - 125a^3 - 135a + 225a^2$$

This can be re-written as:
$$(3)^3 - (5a)^3 - 3(3)^2(5a) + 3(3)(5a)^2$$

$$(3)^3 - (5a)^3 - 3(3)(5a)(3-5a)$$

Which is of the form:
$$x^3 - y^3 - 3xy(x - y) = (x - y)^3$$

Hence
$$27-125a^3-135a+225a^2=(3-5a)^3$$

(iv)
$$64a^3 - 27b^3 - 144a^2b + 108ab^2$$

This can be re-written as: $(4a)^3 - (3b)^3 - 3(4a)^2(3b) + 3(4a)(3b)^2$

$$(4a)^3 - (3b)^3 - 3(4a)(3b)(4a - 3b)$$

Which is of the form: $x^3 - y^3 - 3xy(x - y) = (x - y)^3$

Hence $64a^3 - 27b^3 - 144a^2b + 108ab^2 = (4a - 3b)^3$

(v)
$$27p^3 - \frac{1}{216} - \frac{9}{2}p^2 + \frac{1}{4}p$$

This can be re-written as: $(3p)^3 - (\frac{1}{6})^3 - 3(3p)^2 + \frac{1}{6} + 3(3p)(\frac{1}{6})^2$

$$(3p)^3 - \left(\frac{1}{6}\right)^3 - 3\frac{1}{6}(3p)\frac{1}{6}\left(3p - \frac{1}{6}\right)$$

Which is of the form: $a^3 - b^3 - 3ab(a-b) = (a-b)^3$

Hence
$$27p^3 - \frac{1}{216} - \frac{9}{2}p^2 + \frac{1}{4}p = \left(3p - \frac{1}{6}\right)^3$$

Q9. Verify:

(i)
$$(x^3 + y^3) = (x + y)(x^2 - xy + y^2)$$

(ii)
$$(x^3 - y^3) = (x - y)(x^2 + xy + y^2)$$

Difficulty Level: Easy

$$(x+y)(x^2 - xy + y^2) = x(x^2 - xy + y^2) + y(x^2 - xy + y^2)$$

$$= x^3 - x^2y + xy^2 + x^2y - xy^2 + y^3$$

$$= x^3 + y^3$$

(ii)

$$(x-y)(x^2 + xy + y^2) = x(x^2 + xy + y^2) - y(x^2 + xy + y^2)$$

$$= x^3 + x^2y + xy^2 - x^2y - xy^2 - y^3$$

$$= x^3 - y^3$$

Q10. Factorise each of the following:

(i)
$$27y^3 + 125z^3$$

(ii)
$$64m^3 - 343n^3 = (4m)^3 - (7n)^3$$

[Hint: See Question 9.]

Difficulty Level: Medium

Solution:

(i)
$$27y^3 + 125z^3 = (3y)^3 + (5z)^3$$

Using factorization: $(x^3 + y^3) = (x + y)(x^2 - xy + y^2)$

We can write: $(3y)^3 + (5z)^3 = (3y+5z)[(3y)^2 - (3y) = x^3 - y^3(5z) + (5z)^2]$ $27y^3 + 125z^3 = (3y+5z)(9y^2 - 15yz + 25z^2)$

(ii)
$$64m^3 - 343n^3 = (4m)^3 - (7n)^3$$

Using factorization: $(x^3 - y^3) = (x - y)(x^2 + xy + y^2)$

We can write: $(4m)^3 - (7n)^3 = (4m - 7n)[(4m)^2 + (4m)(7n) + (7n)^2]$ $64m^3 - 343n^3 = (4m - 7n)(16m^2 + 28mn + 49n^2)$

Q11. Factorise: $27x^3 + y^3 + z^3 - 9xyz$

Difficulty Level: Easy

Reasoning:

Identity:
$$x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)$$

Solution:

The above expression can be written as: $(3x)^3 + (y)^3 + (z)^2 - 3(3x)(y)(z)$

By using the identity $x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)$

We can write $(3x)^3 + (y)^3 + (z)^2 - 3(3x)(y)(z)$ = $(3x + y + z)[(3x)^2 + (y)^2 + (z)^2 - (3x)(y) - yz - (z)(3x)]$

Hence
$$27x^3 + y^3 + z^3 - 9xyz = (3x + y + z)(9x^2 + y^2 + z^2 - 3xy - yz - 3zx)$$

Q12. Verify that:

$$x^{3} + y^{3} + z^{3} - 3xy = \frac{1}{2}(x + y + z)[(x - y)^{2} + (y - z)^{2} + (z - x)^{2}]$$

Difficulty Level: Medium

Reasoning:

Identity: $x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)$

WWW.CUEMATH.COM

Solution:

Taking

R.H.S. =
$$\frac{1}{2}(x+y+z)[(x-y)^2 + (y-z)^2 + (z-x)^2]$$

= $\frac{1}{2}(x+y+z)[(x^2-2xy+y^2) + (y^2-2yz+z^2) + (z^2-2zx+x^2)]$
= $\frac{1}{2}(x+y+z)[2x^2+2y^2+2z^2-2xy-2yz-2zx]$
= $\frac{1}{2}(x+y+z)(2)[x^2+y^2+z^2-xy-yz-zx]$

$$= x[x^{2} + y^{2} + z^{2} - xy - yz - zx] + y[x^{2} + y^{2} + z^{2} - xy - yz - zx] + z[x^{2} + y^{2} + z^{2} - xy - yz - zx]$$

$$= [x^{3} + xy^{2} + xz^{2} - x^{2}y - xyz - x^{2}z + x^{2}y + y^{3} + yz^{2} - xy^{2} - y^{2}z - xyz$$

$$+ zx^{2} + y^{2}z + z^{3} - xyz - yz^{2} - xz^{2}]$$

$$= x^{3} + y^{3} + z^{3} - 3xyz = LHS$$

Q13. If
$$x + y + z = 0$$
, show that $x^3 + y^3 + z^3 = 3xyz$

Difficulty Level: Easy

Reasoning:

Identity:
$$x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)$$

Solution:

By the identity:
$$x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)$$

If
$$x+y+z=0$$
 then the entire RHS becomes 0 and hence the LHS $x^3+y^3+z^3-3xyz=0$
Hence $x^3+y^3+z^3=3xyz$

Q14. Without actually calculating the cubes, find the value of each of the following:

(i)
$$(-12)^3 + (7)^3 + (5)^3$$

(ii)
$$(28)^3 + (-15)^3 + (-13)^3$$

Difficulty Level: Easy

Reasoning:

If
$$x+y+z=0$$
 then $x^3 + y^3 + z^3 = 3xyz$

(i) Let
$$x = -12$$
, $y = 7$, $z = 5$

Then
$$x+y+z=-12+7+5=0$$

So, by using the identity,

$$(-12)^3 + (7)^3 + (5)^3 = 3(-12)(7)(5)$$

= -1260

(ii) Let
$$x = 28$$
, $y = -15$, $z = -13$

Then
$$x+y+z=28-15-13=0$$

So, by using the identity,

$$(28)^3 + (-15)^3 + (-13)^3 = 3(28)(-15)(-13)$$
$$= 16380$$

Q15. Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:

(i) Area:
$$25a^2 - 35a + 12$$

(ii) Area:
$$35y^2 + 13y - 12$$

Difficulty Level: Hard

Reasoning:

Area of rectangle = length \times breadth

What is the known/given?

Area of rectangle

What is the unknown?

Length and breadth of the rectangle.

Solution:

i)

Area of rectangle = $length \times breadth$

Hence, we shall factorise the given expression $25a^2 - 35a + 12$

Now taking $25a^2 - 35a + 12$, find 2 numbers p, q such that:

i.
$$p + q = \text{co-efficient of } a$$

ii.
$$pq = \text{co-efficient of } a^2 \text{ and the constant term.}$$

$$p + q = -35$$
 (co-efficient of a)
 $pq = 25 \times 12 = 300$ (co-efficient of a^2 and the constant term.)

By trial and error method, we get p = -20, q = -15.

Now splitting the middle term of the given polynomial,

$$25a^{2} - 35a + 12 = 25a^{2} - 20a - 15a + 12$$

$$= 25a^{2} - 15a - 20a + 12$$

$$= 5a(5a - 3) - 4(5a - 3)$$

$$= (5a - 4)(5a - 3)$$

$$\therefore 25a^2 - 35a + 12 = (5a - 4)(5a - 3)$$

Length =
$$5a - 3$$
 Breadth = $5a - 4$

Length =
$$5a - 4$$
 Breadth = $5a - 3$

What is the known/given?

Area of rectangle.

What is the unknown?

Length and breadth of the rectangle.

Solution:

Area of rectangle = length \times breadth

Hence, we shall factorise the given expression: $35y^2 + 13y - 12$

Now taking $35y^2 + 13y - 12$, find 2 numbers p, q such that:

i.
$$p + q = \text{co-efficient of } y$$

ii. $pq = \text{co-efficient of } y^2 \text{ and the constant term.}$

$$p+q=-13$$
 (co-efficient of y)
 $pq=35\times(-12)=-420$ (co-efficient of y^2 and the constant term.)

By trial and error method, we get p = -28, q = 15.

Now splitting the middle term of the given polynomial,

$$35y^{2} + 13y - 12 = 35y^{2} + 28y - 15y - 12$$
$$= 7y(5y+4) - 3(5y+4)$$
$$= (5y+4)(7y-3)$$

$$\therefore 35y^2 + 13y - 12 = (5y + 4)(7y - 3)$$

Length =
$$5y + 4$$
 Breadth = $7y - 3$

Length =
$$7y - 3$$
 Breadth = $5y + 4$

Q16. What are the possible expressions for the dimensions of the cuboids whose volume are given below?

i) Volume:
$$3x^2 - 12x$$
 ii) Volume: $12ky^2 + 8ky - 20k$

Difficulty Level: Hard

Reasoning:

Volume of Cuboid = length x breadth x height

i

What is the known/given?

Volume of cuboid.

What is the unknown?

Length, breadth and height of the cuboid.

Solution:

Volume of Cuboid = length x breadth x height

Hence, we shall express the given polynomial as product of three expression.

$$3x^2 - 12x = 3x(x-4)$$

Length = 3, breadth = x, height = x - 4

Length = 3, breadth = x - 4, height = x

Length = x, breadth = 3, height = x - 4

Length = x, breadth = x - 4, height = 3

Length = x - 4, breadth = x, height = 3

Length = x - 4, breadth = 3, height = x

ii)

What is the known/given?

Volume of cuboid.

What is the unknown?

Length, breadth and height of the cuboid.

Solution:

Volume of Cuboid = length x breadth x height

Hence, we shall express the given polynomial as product of three factors.

$$12ky^2 + 8ky - 20k = 4k(3y^2 + 2y - 5)$$

Now taking $3y^2 + 2y - 5$, find 2 numbers p, q such that:

i.
$$p + q = \text{co-efficient of } y$$

ii.
$$pq = \text{co-efficient of } y^2 \text{ and the constant term.}$$

$$p+q=2$$
 (co-efficient of y)
 $pq=3\times(-5)=-15$ (co-efficient of y^2 and the constant term.)

By trial and error method, we get p = 5, q = -3.

Now splitting the middle term of the given polynomial,

$$3y^{2} + 2y - 5 = 3y^{2} + 5y - 3y - 5$$

$$= 3y^{2} - 3y + 5y - 5$$

$$= 3y(y - 1) + 5(y - 1)$$

$$= (3y + 5)(y - 1)$$

Volume =
$$4k(y-1)(3y+5)$$

Length = 4k, breadth = y-1, height = 3y+5.

Length = 4k, breadth = 3y + 5, height = y - 1.

Length = y-1, breadth = 4k, height = 3y+5.

Length = y-1, breadth = 3y+5, height = 4k.

Length = 3y + 5, breadth = 4k, height = y - 1.

Length = 3y + 5, breadth = y - 1, height = 4k.

When you learn math in an interesting way, you never forget.

25 Million

Math classes & counting

100K+

Students learning Math the right way

20+ Countries

Present across USA, UK, Singapore, India, UAE & more.

Why choose Cuemath?

"Cuemath is a valuable addition to our family. We love solving puzzle cards. My daughter is now visualizing maths and solving problems effectively!"

"Cuemath is great because my son has a one-on-one interaction with the teacher. The instructor has developed his confidence and I can see progress in his work. One-on-one interaction is perfect and a great bonus."

"I appreciate the effort that miss Nitya puts in to help my daughter understand the best methods and to explain why she got a problem incorrect. She is extremely patient and generous with Miranda."

- Gary Schwartz

- Kirk Riley

- Barbara Cabrera

Get the Cuemath advantage

Book a FREE trial class